mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 01:13:00 +08:00
📚 switch readme
This commit is contained in:
186
docs/normalization/batch_norm.html
Normal file
186
docs/normalization/batch_norm.html
Normal file
@ -0,0 +1,186 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||||
<meta name="description" content=""/>
|
||||
|
||||
<meta name="twitter:card" content="summary"/>
|
||||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta name="twitter:title" content="batch_norm.py"/>
|
||||
<meta name="twitter:description" content=""/>
|
||||
<meta name="twitter:site" content="@labmlai"/>
|
||||
<meta name="twitter:creator" content="@labmlai"/>
|
||||
|
||||
<meta property="og:url" content="https://nn.labml.ai/normalization/batch_norm.html"/>
|
||||
<meta property="og:title" content="batch_norm.py"/>
|
||||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta property="og:site_name" content="LabML Neural Networks"/>
|
||||
<meta property="og:type" content="object"/>
|
||||
<meta property="og:title" content="batch_norm.py"/>
|
||||
<meta property="og:description" content=""/>
|
||||
|
||||
<title>batch_norm.py</title>
|
||||
<link rel="shortcut icon" href="/icon.png"/>
|
||||
<link rel="stylesheet" href="../pylit.css">
|
||||
<link rel="canonical" href="https://nn.labml.ai/normalization/batch_norm.html"/>
|
||||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||||
<script>
|
||||
window.dataLayer = window.dataLayer || [];
|
||||
|
||||
function gtag() {
|
||||
dataLayer.push(arguments);
|
||||
}
|
||||
|
||||
gtag('js', new Date());
|
||||
|
||||
gtag('config', 'G-4V3HC8HBLH');
|
||||
</script>
|
||||
</head>
|
||||
<body>
|
||||
<div id='container'>
|
||||
<div id="background"></div>
|
||||
<div class='section'>
|
||||
<div class='docs'>
|
||||
<p>
|
||||
<a class="parent" href="/">home</a>
|
||||
<a class="parent" href="index.html">normalization</a>
|
||||
</p>
|
||||
<p>
|
||||
|
||||
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/normalization/batch_norm.py">
|
||||
<img alt="Github"
|
||||
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
||||
rel="nofollow">
|
||||
<img alt="Join Slact"
|
||||
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://twitter.com/labmlai"
|
||||
rel="nofollow">
|
||||
<img alt="Twitter"
|
||||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-0'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-0'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">1</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
|
||||
<span class="lineno">2</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
|
||||
<span class="lineno">3</span>
|
||||
<span class="lineno">4</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-1'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-1'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">7</span><span class="k">class</span> <span class="nc">BatchNorm</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-2'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-2'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">8</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">channels</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span>
|
||||
<span class="lineno">9</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span> <span class="n">momentum</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span>
|
||||
<span class="lineno">10</span> <span class="n">affine</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">track_running_stats</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">):</span>
|
||||
<span class="lineno">11</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
||||
<span class="lineno">12</span>
|
||||
<span class="lineno">13</span> <span class="bp">self</span><span class="o">.</span><span class="n">channels</span> <span class="o">=</span> <span class="n">channels</span>
|
||||
<span class="lineno">14</span>
|
||||
<span class="lineno">15</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span> <span class="o">=</span> <span class="n">eps</span>
|
||||
<span class="lineno">16</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">=</span> <span class="n">momentum</span>
|
||||
<span class="lineno">17</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span> <span class="o">=</span> <span class="n">affine</span>
|
||||
<span class="lineno">18</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span> <span class="o">=</span> <span class="n">track_running_stats</span>
|
||||
<span class="lineno">19</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span><span class="p">:</span>
|
||||
<span class="lineno">20</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span>
|
||||
<span class="lineno">21</span> <span class="bp">self</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span>
|
||||
<span class="lineno">22</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span>
|
||||
<span class="lineno">23</span> <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'running_mean'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span>
|
||||
<span class="lineno">24</span> <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'running_var'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-3'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-3'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">26</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
|
||||
<span class="lineno">27</span> <span class="n">x_shape</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span>
|
||||
<span class="lineno">28</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">x_shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
|
||||
<span class="lineno">29</span>
|
||||
<span class="lineno">30</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">channels</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
|
||||
<span class="lineno">31</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">training</span> <span class="ow">or</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span>
|
||||
<span class="lineno">32</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
|
||||
<span class="lineno">33</span> <span class="n">mean_x2</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span>
|
||||
<span class="lineno">34</span> <span class="n">var</span> <span class="o">=</span> <span class="n">mean_x2</span> <span class="o">-</span> <span class="n">mean</span> <span class="o">**</span> <span class="mi">2</span>
|
||||
<span class="lineno">35</span>
|
||||
<span class="lineno">36</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">training</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span>
|
||||
<span class="lineno">37</span> <span class="bp">self</span><span class="o">.</span><span class="n">running_mean</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">running_mean</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">*</span> <span class="n">mean</span>
|
||||
<span class="lineno">38</span> <span class="bp">self</span><span class="o">.</span><span class="n">running_var</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">running_var</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">*</span> <span class="n">var</span>
|
||||
<span class="lineno">39</span> <span class="k">else</span><span class="p">:</span>
|
||||
<span class="lineno">40</span> <span class="n">mean</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">running_mean</span>
|
||||
<span class="lineno">41</span> <span class="n">var</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">running_var</span>
|
||||
<span class="lineno">42</span>
|
||||
<span class="lineno">43</span> <span class="n">x_norm</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span> <span class="o">/</span> <span class="n">torch</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">var</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<span class="lineno">44</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span><span class="p">:</span>
|
||||
<span class="lineno">45</span> <span class="n">x_norm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">x_norm</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<span class="lineno">46</span>
|
||||
<span class="lineno">47</span> <span class="k">return</span> <span class="n">x_norm</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x_shape</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
||||
</script>
|
||||
<!-- MathJax configuration -->
|
||||
<script type="text/x-mathjax-config">
|
||||
MathJax.Hub.Config({
|
||||
tex2jax: {
|
||||
inlineMath: [ ['$','$'] ],
|
||||
displayMath: [ ['$$','$$'] ],
|
||||
processEscapes: true,
|
||||
processEnvironments: true
|
||||
},
|
||||
// Center justify equations in code and markdown cells. Elsewhere
|
||||
// we use CSS to left justify single line equations in code cells.
|
||||
displayAlign: 'center',
|
||||
"HTML-CSS": { fonts: ["TeX"] }
|
||||
});
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
102
docs/normalization/index.html
Normal file
102
docs/normalization/index.html
Normal file
@ -0,0 +1,102 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||||
<meta name="description" content=""/>
|
||||
|
||||
<meta name="twitter:card" content="summary"/>
|
||||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta name="twitter:title" content="None"/>
|
||||
<meta name="twitter:description" content=""/>
|
||||
<meta name="twitter:site" content="@labmlai"/>
|
||||
<meta name="twitter:creator" content="@labmlai"/>
|
||||
|
||||
<meta property="og:url" content="https://nn.labml.ai/normalization/index.html"/>
|
||||
<meta property="og:title" content="None"/>
|
||||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta property="og:site_name" content="LabML Neural Networks"/>
|
||||
<meta property="og:type" content="object"/>
|
||||
<meta property="og:title" content="None"/>
|
||||
<meta property="og:description" content=""/>
|
||||
|
||||
<title>None</title>
|
||||
<link rel="shortcut icon" href="/icon.png"/>
|
||||
<link rel="stylesheet" href="../pylit.css">
|
||||
<link rel="canonical" href="https://nn.labml.ai/normalization/index.html"/>
|
||||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||||
<script>
|
||||
window.dataLayer = window.dataLayer || [];
|
||||
|
||||
function gtag() {
|
||||
dataLayer.push(arguments);
|
||||
}
|
||||
|
||||
gtag('js', new Date());
|
||||
|
||||
gtag('config', 'G-4V3HC8HBLH');
|
||||
</script>
|
||||
</head>
|
||||
<body>
|
||||
<div id='container'>
|
||||
<div id="background"></div>
|
||||
<div class='section'>
|
||||
<div class='docs'>
|
||||
<p>
|
||||
<a class="parent" href="/">home</a>
|
||||
<a class="parent" href="index.html">normalization</a>
|
||||
</p>
|
||||
<p>
|
||||
|
||||
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/normalization/__init__.py">
|
||||
<img alt="Github"
|
||||
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
||||
rel="nofollow">
|
||||
<img alt="Join Slact"
|
||||
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://twitter.com/labmlai"
|
||||
rel="nofollow">
|
||||
<img alt="Twitter"
|
||||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
||||
</script>
|
||||
<!-- MathJax configuration -->
|
||||
<script type="text/x-mathjax-config">
|
||||
MathJax.Hub.Config({
|
||||
tex2jax: {
|
||||
inlineMath: [ ['$','$'] ],
|
||||
displayMath: [ ['$$','$$'] ],
|
||||
processEscapes: true,
|
||||
processEnvironments: true
|
||||
},
|
||||
// Center justify equations in code and markdown cells. Elsewhere
|
||||
// we use CSS to left justify single line equations in code cells.
|
||||
displayAlign: 'center',
|
||||
"HTML-CSS": { fonts: ["TeX"] }
|
||||
});
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
278
docs/normalization/mnist.html
Normal file
278
docs/normalization/mnist.html
Normal file
@ -0,0 +1,278 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||||
<meta name="description" content=""/>
|
||||
|
||||
<meta name="twitter:card" content="summary"/>
|
||||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta name="twitter:title" content="mnist.py"/>
|
||||
<meta name="twitter:description" content=""/>
|
||||
<meta name="twitter:site" content="@labmlai"/>
|
||||
<meta name="twitter:creator" content="@labmlai"/>
|
||||
|
||||
<meta property="og:url" content="https://nn.labml.ai/normalization/mnist.html"/>
|
||||
<meta property="og:title" content="mnist.py"/>
|
||||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta property="og:site_name" content="LabML Neural Networks"/>
|
||||
<meta property="og:type" content="object"/>
|
||||
<meta property="og:title" content="mnist.py"/>
|
||||
<meta property="og:description" content=""/>
|
||||
|
||||
<title>mnist.py</title>
|
||||
<link rel="shortcut icon" href="/icon.png"/>
|
||||
<link rel="stylesheet" href="../pylit.css">
|
||||
<link rel="canonical" href="https://nn.labml.ai/normalization/mnist.html"/>
|
||||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||||
<script>
|
||||
window.dataLayer = window.dataLayer || [];
|
||||
|
||||
function gtag() {
|
||||
dataLayer.push(arguments);
|
||||
}
|
||||
|
||||
gtag('js', new Date());
|
||||
|
||||
gtag('config', 'G-4V3HC8HBLH');
|
||||
</script>
|
||||
</head>
|
||||
<body>
|
||||
<div id='container'>
|
||||
<div id="background"></div>
|
||||
<div class='section'>
|
||||
<div class='docs'>
|
||||
<p>
|
||||
<a class="parent" href="/">home</a>
|
||||
<a class="parent" href="index.html">normalization</a>
|
||||
</p>
|
||||
<p>
|
||||
|
||||
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/normalization/mnist.py">
|
||||
<img alt="Github"
|
||||
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
||||
rel="nofollow">
|
||||
<img alt="Join Slact"
|
||||
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://twitter.com/labmlai"
|
||||
rel="nofollow">
|
||||
<img alt="Twitter"
|
||||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-0'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-0'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">1</span><span></span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
|
||||
<span class="lineno">2</span><span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
|
||||
<span class="lineno">3</span><span class="kn">import</span> <span class="nn">torch.utils.data</span>
|
||||
<span class="lineno">4</span>
|
||||
<span class="lineno">5</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span><span class="p">,</span> <span class="n">tracker</span>
|
||||
<span class="lineno">6</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span>
|
||||
<span class="lineno">7</span><span class="kn">from</span> <span class="nn">labml_helpers.datasets.mnist</span> <span class="kn">import</span> <span class="n">MNISTConfigs</span>
|
||||
<span class="lineno">8</span><span class="kn">from</span> <span class="nn">labml_helpers.device</span> <span class="kn">import</span> <span class="n">DeviceConfigs</span>
|
||||
<span class="lineno">9</span><span class="kn">from</span> <span class="nn">labml_helpers.metrics.accuracy</span> <span class="kn">import</span> <span class="n">Accuracy</span>
|
||||
<span class="lineno">10</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
|
||||
<span class="lineno">11</span><span class="kn">from</span> <span class="nn">labml_helpers.seed</span> <span class="kn">import</span> <span class="n">SeedConfigs</span>
|
||||
<span class="lineno">12</span><span class="kn">from</span> <span class="nn">labml_helpers.train_valid</span> <span class="kn">import</span> <span class="n">TrainValidConfigs</span><span class="p">,</span> <span class="n">BatchIndex</span><span class="p">,</span> <span class="n">hook_model_outputs</span>
|
||||
<span class="lineno">13</span><span class="kn">from</span> <span class="nn">labml_nn.normalization.batch_norm</span> <span class="kn">import</span> <span class="n">BatchNorm</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-1'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-1'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">16</span><span class="k">class</span> <span class="nc">Net</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-2'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-2'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">17</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||
<span class="lineno">18</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
||||
<span class="lineno">19</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<span class="lineno">20</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn1</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">20</span><span class="p">)</span>
|
||||
<span class="lineno">21</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<span class="lineno">22</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn2</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">50</span><span class="p">)</span>
|
||||
<span class="lineno">23</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">4</span> <span class="o">*</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">500</span><span class="p">)</span>
|
||||
<span class="lineno">24</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn3</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">500</span><span class="p">)</span>
|
||||
<span class="lineno">25</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">500</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-3'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-3'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">27</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
|
||||
<span class="lineno">28</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn1</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">29</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="lineno">30</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn2</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">31</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="lineno">32</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">50</span><span class="p">)</span>
|
||||
<span class="lineno">33</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn3</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">34</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-4'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-4'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">37</span><span class="k">class</span> <span class="nc">Configs</span><span class="p">(</span><span class="n">MNISTConfigs</span><span class="p">,</span> <span class="n">TrainValidConfigs</span><span class="p">):</span>
|
||||
<span class="lineno">38</span> <span class="n">optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span>
|
||||
<span class="lineno">39</span> <span class="n">model</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Module</span>
|
||||
<span class="lineno">40</span> <span class="n">set_seed</span> <span class="o">=</span> <span class="n">SeedConfigs</span><span class="p">()</span>
|
||||
<span class="lineno">41</span> <span class="n">device</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="n">DeviceConfigs</span><span class="p">()</span>
|
||||
<span class="lineno">42</span> <span class="n">epochs</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span>
|
||||
<span class="lineno">43</span>
|
||||
<span class="lineno">44</span> <span class="n">is_save_models</span> <span class="o">=</span> <span class="kc">True</span>
|
||||
<span class="lineno">45</span> <span class="n">model</span><span class="p">:</span> <span class="n">nn</span><span class="o">.</span><span class="n">Module</span>
|
||||
<span class="lineno">46</span> <span class="n">inner_iterations</span> <span class="o">=</span> <span class="mi">10</span>
|
||||
<span class="lineno">47</span>
|
||||
<span class="lineno">48</span> <span class="n">accuracy_func</span> <span class="o">=</span> <span class="n">Accuracy</span><span class="p">()</span>
|
||||
<span class="lineno">49</span> <span class="n">loss_func</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">CrossEntropyLoss</span><span class="p">()</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-5'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-5'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">51</span> <span class="k">def</span> <span class="nf">init</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||
<span class="lineno">52</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_queue</span><span class="p">(</span><span class="s2">"loss.*"</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
|
||||
<span class="lineno">53</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">"accuracy.*"</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
|
||||
<span class="lineno">54</span> <span class="n">hook_model_outputs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">,</span> <span class="s1">'model'</span><span class="p">)</span>
|
||||
<span class="lineno">55</span> <span class="bp">self</span><span class="o">.</span><span class="n">state_modules</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">accuracy_func</span><span class="p">]</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-6'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-6'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">57</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="nb">any</span><span class="p">,</span> <span class="n">batch_idx</span><span class="p">:</span> <span class="n">BatchIndex</span><span class="p">):</span>
|
||||
<span class="lineno">58</span> <span class="n">data</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">),</span> <span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
|
||||
<span class="lineno">59</span>
|
||||
<span class="lineno">60</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
|
||||
<span class="lineno">61</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add_global_step</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">))</span>
|
||||
<span class="lineno">62</span>
|
||||
<span class="lineno">63</span> <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">is_log_activations</span><span class="o">=</span><span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">):</span>
|
||||
<span class="lineno">64</span> <span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
|
||||
<span class="lineno">65</span>
|
||||
<span class="lineno">66</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_func</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
|
||||
<span class="lineno">67</span> <span class="bp">self</span><span class="o">.</span><span class="n">accuracy_func</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
|
||||
<span class="lineno">68</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s2">"loss."</span><span class="p">,</span> <span class="n">loss</span><span class="p">)</span>
|
||||
<span class="lineno">69</span>
|
||||
<span class="lineno">70</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
|
||||
<span class="lineno">71</span> <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
|
||||
<span class="lineno">72</span>
|
||||
<span class="lineno">73</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
|
||||
<span class="lineno">74</span> <span class="k">if</span> <span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">:</span>
|
||||
<span class="lineno">75</span> <span class="n">tracker</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="s1">'model'</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
|
||||
<span class="lineno">76</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
|
||||
<span class="lineno">77</span>
|
||||
<span class="lineno">78</span> <span class="n">tracker</span><span class="o">.</span><span class="n">save</span><span class="p">()</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-7'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-7'>#</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">81</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
|
||||
<span class="lineno">82</span><span class="k">def</span> <span class="nf">model</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span>
|
||||
<span class="lineno">83</span> <span class="k">return</span> <span class="n">Net</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
|
||||
<span class="lineno">84</span>
|
||||
<span class="lineno">85</span>
|
||||
<span class="lineno">86</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">)</span>
|
||||
<span class="lineno">87</span><span class="k">def</span> <span class="nf">_optimizer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span>
|
||||
<span class="lineno">88</span> <span class="kn">from</span> <span class="nn">labml_helpers.optimizer</span> <span class="kn">import</span> <span class="n">OptimizerConfigs</span>
|
||||
<span class="lineno">89</span> <span class="n">opt_conf</span> <span class="o">=</span> <span class="n">OptimizerConfigs</span><span class="p">()</span>
|
||||
<span class="lineno">90</span> <span class="n">opt_conf</span><span class="o">.</span><span class="n">parameters</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">()</span>
|
||||
<span class="lineno">91</span> <span class="k">return</span> <span class="n">opt_conf</span>
|
||||
<span class="lineno">92</span>
|
||||
<span class="lineno">93</span>
|
||||
<span class="lineno">94</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span>
|
||||
<span class="lineno">95</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span>
|
||||
<span class="lineno">96</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">'mnist_labml_helpers'</span><span class="p">)</span>
|
||||
<span class="lineno">97</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="p">{</span><span class="s1">'optimizer.optimizer'</span><span class="p">:</span> <span class="s1">'Adam'</span><span class="p">})</span>
|
||||
<span class="lineno">98</span> <span class="n">conf</span><span class="o">.</span><span class="n">set_seed</span><span class="o">.</span><span class="n">set</span><span class="p">()</span>
|
||||
<span class="lineno">99</span> <span class="n">experiment</span><span class="o">.</span><span class="n">add_pytorch_models</span><span class="p">(</span><span class="nb">dict</span><span class="p">(</span><span class="n">model</span><span class="o">=</span><span class="n">conf</span><span class="o">.</span><span class="n">model</span><span class="p">))</span>
|
||||
<span class="lineno">100</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span>
|
||||
<span class="lineno">101</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
|
||||
<span class="lineno">102</span>
|
||||
<span class="lineno">103</span>
|
||||
<span class="lineno">104</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
||||
<span class="lineno">105</span> <span class="n">main</span><span class="p">()</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
||||
</script>
|
||||
<!-- MathJax configuration -->
|
||||
<script type="text/x-mathjax-config">
|
||||
MathJax.Hub.Config({
|
||||
tex2jax: {
|
||||
inlineMath: [ ['$','$'] ],
|
||||
displayMath: [ ['$$','$$'] ],
|
||||
processEscapes: true,
|
||||
processEnvironments: true
|
||||
},
|
||||
// Center justify equations in code and markdown cells. Elsewhere
|
||||
// we use CSS to left justify single line equations in code cells.
|
||||
displayAlign: 'center',
|
||||
"HTML-CSS": { fonts: ["TeX"] }
|
||||
});
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
@ -83,6 +83,27 @@
|
||||
</url>
|
||||
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/normalization/index.html</loc>
|
||||
<lastmod>2021-02-01T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/normalization/batch_norm.html</loc>
|
||||
<lastmod>2021-02-01T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/normalization/mnist.html</loc>
|
||||
<lastmod>2021-02-01T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/experiments/nlp_autoregression.html</loc>
|
||||
<lastmod>2021-01-25T16:30:00+00:00</lastmod>
|
||||
@ -218,7 +239,7 @@
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/transformers/models.html</loc>
|
||||
<lastmod>2021-01-25T16:30:00+00:00</lastmod>
|
||||
<lastmod>2021-02-01T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
@ -232,7 +253,7 @@
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/transformers/gpt/index.html</loc>
|
||||
<lastmod>2021-01-30T16:30:00+00:00</lastmod>
|
||||
<lastmod>2021-02-01T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
@ -344,14 +365,14 @@
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/transformers/mha.html</loc>
|
||||
<lastmod>2021-01-10T16:30:00+00:00</lastmod>
|
||||
<lastmod>2021-02-01T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/transformers/relative_mha.html</loc>
|
||||
<lastmod>2021-01-30T16:30:00+00:00</lastmod>
|
||||
<lastmod>2021-02-01T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
|
@ -76,16 +76,16 @@
|
||||
<p>This is a miniature <a href="https://pytorch.org">PyTorch</a> implementation of the paper
|
||||
<a href="https://arxiv.org/abs/2101.03961">Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity</a>.
|
||||
Our implementation only has a few million parameters and doesn’t do model parallel distributed training.
|
||||
It does single GPU training but we implement the concept of switching as described in the paper.</p>
|
||||
It does single GPU training, but we implement the concept of switching as described in the paper.</p>
|
||||
<p>The Switch Transformer uses different parameters for each token by switching among parameters,
|
||||
based on the token. So only a fraction of parameters is chosen for each token, so you
|
||||
can have more parameters but less computational cost.</p>
|
||||
<p>The switching happens at the Position-wise Feedforward network (FFN) of of each transformer block.
|
||||
<p>The switching happens at the Position-wise Feedforward network (FFN) of each transformer block.
|
||||
Position-wise feedforward network is a two sequentially fully connected layers.
|
||||
In switch transformer we have multiple FFNs (multiple experts) and
|
||||
we chose which one to use based on a router.
|
||||
In switch transformer we have multiple FFNs (multiple experts),
|
||||
and we chose which one to use based on a router.
|
||||
The outputs a set of probabilities for picking a FFN,
|
||||
and we pick the one with highest probability and only evaluates that.
|
||||
and we pick the one with the highest probability and only evaluates that.
|
||||
So essentially the computational cost is same as having a single FFN.
|
||||
In our implementation this doesn’t parallelize well when you have many or large FFNs since it’s all
|
||||
happening on a single GPU.
|
||||
|
136
docs/transformers/switch/readme.html
Normal file
136
docs/transformers/switch/readme.html
Normal file
@ -0,0 +1,136 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||||
<meta name="description" content=""/>
|
||||
|
||||
<meta name="twitter:card" content="summary"/>
|
||||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta name="twitter:title" content="Switch Transformer"/>
|
||||
<meta name="twitter:description" content=""/>
|
||||
<meta name="twitter:site" content="@labmlai"/>
|
||||
<meta name="twitter:creator" content="@labmlai"/>
|
||||
|
||||
<meta property="og:url" content="https://nn.labml.ai/transformers/switch/readme.html"/>
|
||||
<meta property="og:title" content="Switch Transformer"/>
|
||||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta property="og:site_name" content="LabML Neural Networks"/>
|
||||
<meta property="og:type" content="object"/>
|
||||
<meta property="og:title" content="Switch Transformer"/>
|
||||
<meta property="og:description" content=""/>
|
||||
|
||||
<title>Switch Transformer</title>
|
||||
<link rel="shortcut icon" href="/icon.png"/>
|
||||
<link rel="stylesheet" href="../../pylit.css">
|
||||
<link rel="canonical" href="https://nn.labml.ai/transformers/switch/readme.html"/>
|
||||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||||
<script>
|
||||
window.dataLayer = window.dataLayer || [];
|
||||
|
||||
function gtag() {
|
||||
dataLayer.push(arguments);
|
||||
}
|
||||
|
||||
gtag('js', new Date());
|
||||
|
||||
gtag('config', 'G-4V3HC8HBLH');
|
||||
</script>
|
||||
</head>
|
||||
<body>
|
||||
<div id='container'>
|
||||
<div id="background"></div>
|
||||
<div class='section'>
|
||||
<div class='docs'>
|
||||
<p>
|
||||
<a class="parent" href="/">home</a>
|
||||
<a class="parent" href="../index.html">transformers</a>
|
||||
<a class="parent" href="index.html">switch</a>
|
||||
</p>
|
||||
<p>
|
||||
|
||||
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/transformers/switch/readme.md">
|
||||
<img alt="Github"
|
||||
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
||||
rel="nofollow">
|
||||
<img alt="Join Slact"
|
||||
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://twitter.com/labmlai"
|
||||
rel="nofollow">
|
||||
<img alt="Twitter"
|
||||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-0'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-0'>#</a>
|
||||
</div>
|
||||
<h1><a href="https://nn.labml.ai/transformers/switch/index.html">Switch Transformer</a></h1>
|
||||
<p>This is a miniature <a href="https://pytorch.org">PyTorch</a> implementation of the paper
|
||||
<a href="https://arxiv.org/abs/2101.03961">Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity</a>.
|
||||
Our implementation only has a few million parameters and doesn’t do model parallel distributed training.
|
||||
It does single GPU training, but we implement the concept of switching as described in the paper.</p>
|
||||
<p>The Switch Transformer uses different parameters for each token by switching among parameters,
|
||||
based on the token. So only a fraction of parameters is chosen for each token, so you
|
||||
can have more parameters but less computational cost.</p>
|
||||
<p>The switching happens at the Position-wise Feedforward network (FFN) of each transformer block.
|
||||
Position-wise feedforward network is a two sequentially fully connected layers.
|
||||
In switch transformer we have multiple FFNs (multiple experts),
|
||||
and we chose which one to use based on a router.
|
||||
The outputs a set of probabilities for picking a FFN,
|
||||
and we pick the one with the highest probability and only evaluates that.
|
||||
So essentially the computational cost is same as having a single FFN.
|
||||
In our implementation this doesn’t parallelize well when you have many or large FFNs since it’s all
|
||||
happening on a single GPU.
|
||||
In a distributed setup you would have each FFN (each very large) on a different device.</p>
|
||||
<p>The paper introduces another loss term to balance load among the experts (FFNs) and
|
||||
discusses dropping tokens when routing is not balanced.</p>
|
||||
<p>Here’s <a href="experiment.html">the training code</a> and a notebook for training a switch transformer on Tiny Shakespeare dataset.</p>
|
||||
<p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/transformers/switch/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
|
||||
<a href="https://web.lab-ml.com/run?uuid=c4656c605b9311eba13d0242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
||||
</script>
|
||||
<!-- MathJax configuration -->
|
||||
<script type="text/x-mathjax-config">
|
||||
MathJax.Hub.Config({
|
||||
tex2jax: {
|
||||
inlineMath: [ ['$','$'] ],
|
||||
displayMath: [ ['$$','$$'] ],
|
||||
processEscapes: true,
|
||||
processEnvironments: true
|
||||
},
|
||||
// Center justify equations in code and markdown cells. Elsewhere
|
||||
// we use CSS to left justify single line equations in code cells.
|
||||
displayAlign: 'center',
|
||||
"HTML-CSS": { fonts: ["TeX"] }
|
||||
});
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
@ -10,18 +10,18 @@ summary: >
|
||||
This is a miniature [PyTorch](https://pytorch.org) implementation of the paper
|
||||
[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961).
|
||||
Our implementation only has a few million parameters and doesn't do model parallel distributed training.
|
||||
It does single GPU training but we implement the concept of switching as described in the paper.
|
||||
It does single GPU training, but we implement the concept of switching as described in the paper.
|
||||
|
||||
The Switch Transformer uses different parameters for each token by switching among parameters,
|
||||
based on the token. So only a fraction of parameters is chosen for each token, so you
|
||||
can have more parameters but less computational cost.
|
||||
|
||||
The switching happens at the Position-wise Feedforward network (FFN) of of each transformer block.
|
||||
The switching happens at the Position-wise Feedforward network (FFN) of each transformer block.
|
||||
Position-wise feedforward network is a two sequentially fully connected layers.
|
||||
In switch transformer we have multiple FFNs (multiple experts) and
|
||||
we chose which one to use based on a router.
|
||||
In switch transformer we have multiple FFNs (multiple experts),
|
||||
and we chose which one to use based on a router.
|
||||
The outputs a set of probabilities for picking a FFN,
|
||||
and we pick the one with highest probability and only evaluates that.
|
||||
and we pick the one with the highest probability and only evaluates that.
|
||||
So essentially the computational cost is same as having a single FFN.
|
||||
In our implementation this doesn't parallelize well when you have many or large FFNs since it's all
|
||||
happening on a single GPU.
|
||||
|
29
labml_nn/transformers/switch/readme.md
Normal file
29
labml_nn/transformers/switch/readme.md
Normal file
@ -0,0 +1,29 @@
|
||||
# [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html)
|
||||
|
||||
This is a miniature [PyTorch](https://pytorch.org) implementation of the paper
|
||||
[Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961).
|
||||
Our implementation only has a few million parameters and doesn't do model parallel distributed training.
|
||||
It does single GPU training, but we implement the concept of switching as described in the paper.
|
||||
|
||||
The Switch Transformer uses different parameters for each token by switching among parameters,
|
||||
based on the token. So only a fraction of parameters is chosen for each token, so you
|
||||
can have more parameters but less computational cost.
|
||||
|
||||
The switching happens at the Position-wise Feedforward network (FFN) of each transformer block.
|
||||
Position-wise feedforward network is a two sequentially fully connected layers.
|
||||
In switch transformer we have multiple FFNs (multiple experts),
|
||||
and we chose which one to use based on a router.
|
||||
The outputs a set of probabilities for picking a FFN,
|
||||
and we pick the one with the highest probability and only evaluates that.
|
||||
So essentially the computational cost is same as having a single FFN.
|
||||
In our implementation this doesn't parallelize well when you have many or large FFNs since it's all
|
||||
happening on a single GPU.
|
||||
In a distributed setup you would have each FFN (each very large) on a different device.
|
||||
|
||||
The paper introduces another loss term to balance load among the experts (FFNs) and
|
||||
discusses dropping tokens when routing is not balanced.
|
||||
|
||||
Here's [the training code](experiment.html) and a notebook for training a switch transformer on Tiny Shakespeare dataset.
|
||||
|
||||
[](https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/transformers/switch/experiment.ipynb)
|
||||
[](https://web.lab-ml.com/run?uuid=c4656c605b9311eba13d0242ac1c0002)
|
Reference in New Issue
Block a user