mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 18:58:43 +08:00 
			
		
		
		
	labml.ai Neural Networks
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,
The website renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better.
We are actively maintaining this repo and adding new
implementations almost weekly.
 for updates.
Modules
✨ Transformers
- Multi-headed attention
- Transformer building blocks
- Transformer XL
- Compressive Transformer
- GPT Architecture
- GLU Variants
- kNN-LM: Generalization through Memorization
- Feedback Transformer
- Switch Transformer
- Fast Weights Transformer
✨ Recurrent Highway Networks
✨ LSTM
✨ HyperNetworks - HyperLSTM
✨ Capsule Networks
✨ Generative Adversarial Networks
✨ Sketch RNN
✨ Reinforcement Learning
- Proximal Policy Optimization with Generalized Advantage Estimation
- Deep Q Networks with with Dueling Network, Prioritized Replay and Double Q Network.
✨ Optimizers
✨ Normalization Layers
Installation
pip install labml-nn
Citing LabML
If you use LabML for academic research, please cite the library using the following BibTeX entry.
@misc{labml,
 author = {Varuna Jayasiri, Nipun Wijerathne},
 title = {LabML: A library to organize machine learning experiments},
 year = {2020},
 url = {https://nn.labml.ai/},
}
Description
				🧑🏫 60+ Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, sophia, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠
						
						
						
							
							attentiondeep-learningdeep-learning-tutorialganliterate-programmingloramachine-learningneural-networksoptimizerspytorchreinforcement-learningtransformertransformers
						
						
						
							
								 Readme
							
						
						
						
						
							
							
							 154 MiB
						
					
					Languages
				
				
								
								
									Python
								
								89.6%
							
						
							
								
								
									Jupyter Notebook
								
								10.3%
							
						
							
								
								
									Makefile
								
								0.1%
							
						
					 
			