This is the code to test the model on EleutherAI/lm-evaluation-harness.
15import math
16from typing import List
17
18import torch
19import torch.nn.functional as F
20from lm_eval import tasks, evaluator, utils
21from lm_eval.base import BaseLM
22from tokenizers import Tokenizer
23from torch import nn
24from tqdm import tqdm
25
26from labml import monit
27from labml_nn.neox.tokenizer import get_tokenizer30class EvalHarnessAdapter(BaseLM):tokenizer
is the Huggingface Tokenizer vocab_size
is the size of the vocabulary (this differs from the tokenizer vocab size since neox adds some extra to make the embedding layer model parallel.) batch_size
is the batch size37 def __init__(self, tokenizer: Tokenizer, vocab_size: int, batch_size: int):45 super().__init__()
46 self.tokenizer = tokenizer
47 self._eot_token_id = self.tokenizer.token_to_id("<|endoftext|>")
48 self._vocab_size = vocab_size
49
50 self._batch_size = batch_sizeSize of the vocabulary
52 @property
53 def device(self):
54 raise RuntimeError()
55
56 @property
57 def vocab_size(self):59 return self._vocab_sizeEnd-of-text token
61 @property
62 def eot_token_id(self):64 return self._eot_token_idMaximum sequence length
66 @property
67 def max_length(self):69 return 2048Maximum number of tokens to generate
71 @property
72 def max_gen_toks(self):74 return 128Batch size
76 @property
77 def batch_size(self):81 return self._batch_sizeEncode a given text
83 def tok_encode(self, string: str):87 return self.tokenizer.encode(string).idsDecode text from token ids
89 def tok_decode(self, tokens: List[int]):93 return self.tokenizer.decode(tokens)95 def _model_call(self, inps: torch.Tensor):
96 raise NotImplementedError98 def _model_generate(self, context, max_length, eos_token_id):
99 raise RuntimeError()101 def greedy_until(self, requests):
102 raise RuntimeError()requests
List of requests containing the context and the expected continuation. disable_tqdm
If True, disable tqdm progress bar.104 @torch.no_grad()
105 def _loglikelihood_tokens(self, requests, disable_tqdm=False):For results
114 res = []Reorder the requests in the descending order of the lengths, so that sequences with similar lengths are close
118 def _collate(x):
119 toks = x[1] + x[2]
120 return -len(toks), tuple(toks)
121
122 reord = utils.Reorderer(requests, _collate)Loop through requests with batch_size
number of requests at a time
125 for chunk in utils.chunks(tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size):To store the inputs for the batch
127 inps = []The continuations for the batch
129 continuations = []Lengths of the input sequences
131 inplens = []Padded length for the batch
133 padded_length = NoneLoop through each request in the chunk and collect them into PyTorch tensors with paddings
135 for _, context_enc, continuation_enc in chunk:Concatenate the context and continuation
137 inp = context_enc + continuation_encTruncate from left if the size exceeds the max_length
139 inp = inp[-(self.max_length + 1):]Remove final token
141 inp = inp[:-1]Create a tensor
143 inp = torch.tensor(inp, dtype=torch.long)Input length
145 inplen = inp.shape[0]Determine the padded length. Shorter sequences will get padded.
149 if padded_length is None:
150 padded_length = int(math.ceil(inplen / 32)) * 32padded_length = padded_length if padded_length is not None else inplen
Padding
154 padding = torch.zeros(padded_length - inplen, dtype=torch.long)Add padding
157 inp = torch.cat([inp, padding], dim=0)
158
159 inps.append(inp)
160 continuations.append(continuation_enc)
161 inplens.append(inplen)Get model logits
164 logits = self._model_call(torch.stack(inps))Get log softmaxes
167 multi_logits = F.log_softmax(logits, dim=-1)Loop through the input/output pairs of the batch
170 for logits, inplen, cont_toks in zip(multi_logits, inplens, continuations):Get number of predicted tokens
172 contlen = len(cont_toks)Get logits of those
174 logits = logits[inplen - contlen: inplen]Get the tokens with the highest probabilities
176 greedy_tokens = logits.argmax(dim=-1)Get the target tokens
178 cont_toks = torch.tensor(cont_toks, dtype=torch.long).to(logits.device)Whether there's an exact match
180 max_equal = (greedy_tokens == cont_toks).all()Log-likelihoods of the target tokens
182 logits = torch.gather(logits, 1, cont_toks[:, None])Add the total log-likelihoods and whether there was a match to the results
184 res.append((float(logits.sum()), bool(max_equal)))Re-order and return results
187 return reord.get_original(res)189 @torch.no_grad()
190 def run_eval(self, name: str, eval_tasks: List[str]):Run EleutherAI/lm-evaluation-harness evaluator
196 results = evaluator.evaluate(lm=self, task_dict=tasks.get_task_dict(eval_tasks))Add configs
199 results["config"] = {
200 "name": name,
201 }204 return results207class NoeXEvalHarnessAdapter(EvalHarnessAdapter):model
is model tokenizer
is the Huggingface Tokenizer vocab_size
is the size of the vocabulary (this differs from the tokenizer vocab size since neox adds some extra to make the embedding layer model parallel.) batch_size
is the batch size device
is the device of the model214 def __init__(self, model: nn.Module, tokenizer: Tokenizer, vocab_size: int, batch_size: int, device: torch.device):224 super().__init__(tokenizer, vocab_size, batch_size)
225 self.model = model
226 self._device = deviceCall the model
228 def _model_call(self, inps: torch.Tensor):232 return self.model(inps.to(self._device))235def run_eval_harness(model: nn.Module, name: str, eval_tasks: List[str], device: torch.device, batch_size: int = 8):Load the tokenizer
241 with monit.section('Load tokenizer'):
242 tokenizer = get_tokenizer()All tasks if nothing is specified
245 if not eval_tasks:
246 eval_tasks = [
247 "anli_r1",
248 "anli_r2",
249 "anli_r3",
250 "hellaswag",
251 "lambada",
252 "piqa",
253 "winogrande",
254 "wsc",
255 "mathqa",
256 ]Create the adapter
259 adapter = NoeXEvalHarnessAdapter(model, tokenizer, 50_432, batch_size, device)Run
262 return adapter.run_eval(name, eval_tasks)