This is a PyTorch implementation of paper Playing Atari with Deep Reinforcement Learning along with Dueling Network, Prioritized Replay and Double Q Network.
Here is the experiment and model implementation.
27from typing import Tuple
28
29import torch
30from torch import nn
31
32from labml import tracker
33from labml_helpers.module import Module
34from labml_nn.rl.dqn.replay_buffer import ReplayBuffer
We want to find optimal action-value function.
In order to improve stability we use experience replay that randomly sample from previous experience $U(D)$. We also use a Q network with a separate set of paramters $\color{orangle}{\theta_i^{-}}$ to calculate the target. $\color{orangle}{\theta_i^{-}}$ is updated periodically. This is according to paper Human Level Control Through Deep Reinforcement Learning.
So the loss function is,
The max operator in the above calculation uses same network for both selecting the best action and for evaluating the value. That is, We use double Q-learning, where the $\operatorname{argmax}$ is taken from $\color{cyan}{\theta_i}$ and the value is taken from $\color{orange}{\theta_i^{-}}$.
And the loss function becomes,
37class QFuncLoss(Module):
104 def __init__(self, gamma: float):
105 super().__init__()
106 self.gamma = gamma
107 self.huber_loss = nn.SmoothL1Loss(reduction='none')
q
- $Q(s;\theta_i)$action
- $a$double_q
- $\color{cyan}Q(s’;\color{cyan}{\theta_i})$target_q
- $\color{orange}Q(s’;\color{orange}{\theta_i^{-}})$done
- whether the game ended after taking the actionreward
- $r$weights
- weights of the samples from prioritized experienced replay109 def __call__(self, q: torch.Tensor, action: torch.Tensor, double_q: torch.Tensor,
110 target_q: torch.Tensor, done: torch.Tensor, reward: torch.Tensor,
111 weights: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
$Q(s,a;\theta_i)$
123 q_sampled_action = q.gather(-1, action.to(torch.long).unsqueeze(-1)).squeeze(-1)
124 tracker.add('q_sampled_action', q_sampled_action)
Gradients shouldn’t propagate gradients
132 with torch.no_grad():
Get the best action at state $s’$
136 best_next_action = torch.argmax(double_q, -1)
Get the q value from the target network for the best action at state $s’$
142 best_next_q_value = target_q.gather(-1, best_next_action.unsqueeze(-1)).squeeze(-1)
Calculate the desired Q value.
We multiply by (1 - done)
to zero out
the next state Q values if the game ended.
153 q_update = reward + self.gamma * best_next_q_value * (1 - done)
154 tracker.add('q_update', q_update)
Temporal difference error $\delta$ is used to weigh samples in replay buffer
157 td_error = q_sampled_action - q_update
158 tracker.add('td_error', td_error)
We take Huber loss instead of mean squared error loss because it is less sensitive to outliers
162 losses = self.huber_loss(q_sampled_action, q_update)
Get weighted means
164 loss = torch.mean(weights * losses)
165 tracker.add('loss', loss)
166
167 return td_error, loss