cleanup some unused imports

This commit is contained in:
Varuna Jayasiri
2025-07-18 10:40:22 +05:30
parent 1b702523b9
commit f6d77c36b2
8 changed files with 16 additions and 37 deletions

View File

@ -41,7 +41,6 @@ import numpy as np
from labml import experiment
from labml.configs import option
from labml_nn.cfr import History as _History, InfoSet as _InfoSet, Action, Player, CFRConfigs
from labml_nn.cfr.infoset_saver import InfoSetSaver
# Kuhn poker actions are pass (`p`) or bet (`b`)
ACTIONS = cast(List[Action], ['p', 'b'])

View File

@ -71,11 +71,7 @@
}
},
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"from labml import experiment\n",
"from labml.configs import option\n",
"from labml_nn.diffusion.ddpm.experiment import Configs"
],
"outputs": [],

View File

@ -68,11 +68,7 @@
}
},
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"from labml import experiment\n",
"from labml.configs import option\n",
"from labml_nn.normalization.deep_norm.experiment import Configs"
],
"outputs": [],

View File

@ -53,9 +53,6 @@
"id": "0hJXx_g0wS2C"
},
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"from labml import experiment\n",
"from labml_nn.normalization.weight_standardization.experiment import CIFAR10Configs as Configs"
],

View File

@ -26,8 +26,8 @@ The experiment uses [Generalized Advantage Estimation](gae.html).
"""
import torch
from labml_nn.rl.ppo.gae import GAE
from torch import nn
class ClippedPPOLoss(nn.Module):
@ -178,7 +178,7 @@ class ClippedPPOLoss(nn.Module):
return -policy_reward.mean()
class ClippedValueFunctionLoss(Module):
class ClippedValueFunctionLoss(nn.Module):
"""
## Clipped Value Function Loss

View File

@ -71,11 +71,7 @@
}
},
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"from labml import experiment\n",
"from labml.configs import option\n",
"from labml_nn.transformers.basic.autoregressive_experiment import Configs"
],
"outputs": [],

View File

@ -67,11 +67,7 @@
"id": "0hJXx_g0wS2C"
},
"source": [
"import torch\n",
"import torch.nn as nn\n",
"\n",
"from labml import experiment\n",
"from labml.configs import option\n",
"from labml_nn.transformers.fast_weights.experiment import Configs"
],
"outputs": [],
@ -138,21 +134,21 @@
},
"source": [
"experiment.configs(conf,\n",
" # A dictionary of configurations to override\n",
" {'tokenizer': 'character',\n",
" 'text': 'tiny_shakespeare',\n",
" 'optimizer.learning_rate': 1.0,\n",
" 'optimizer.optimizer': 'Noam',\n",
" 'prompt': 'It is',\n",
" 'prompt_separator': '',\n",
" # A dictionary of configurations to override\n",
" {'tokenizer': 'character',\n",
" 'text': 'tiny_shakespeare',\n",
" 'optimizer.learning_rate': 1.0,\n",
" 'optimizer.optimizer': 'Noam',\n",
" 'prompt': 'It is',\n",
" 'prompt_separator': '',\n",
"\n",
" 'train_loader': 'shuffled_train_loader',\n",
" 'valid_loader': 'shuffled_valid_loader',\n",
" 'train_loader': 'shuffled_train_loader',\n",
" 'valid_loader': 'shuffled_valid_loader',\n",
"\n",
" 'seq_len': 128,\n",
" 'epochs': 128,\n",
" 'batch_size': 16,\n",
" 'inner_iterations': 25})"
" 'seq_len': 128,\n",
" 'epochs': 128,\n",
" 'batch_size': 16,\n",
" 'inner_iterations': 25})"
],
"outputs": [],
"execution_count": null

View File

@ -13,13 +13,12 @@ You can find the download instructions
Save the training images inside `carvana/train` folder and the masks in `carvana/train_masks` folder.
"""
from torch import nn
from pathlib import Path
import torch.utils.data
import torchvision.transforms.functional
from PIL import Image
import torch.utils.data
from labml import lab