mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 09:31:42 +08:00
sophia exp
This commit is contained in:
@ -67,6 +67,8 @@ class OptimizerConfigs(BaseConfigs):
|
||||
# Model embedding size for Noam optimizer
|
||||
d_model: int
|
||||
|
||||
rho: float
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(_primary='optimizer')
|
||||
|
||||
@ -137,6 +139,14 @@ def _noam_optimizer(c: OptimizerConfigs):
|
||||
d_model=c.d_model)
|
||||
|
||||
|
||||
@option(OptimizerConfigs.optimizer, 'Sophia')
|
||||
def _sophia_optimizer(c: OptimizerConfigs):
|
||||
from labml_nn.optimizers.sophia import Sophia
|
||||
return Sophia(c.parameters,
|
||||
lr=c.learning_rate, betas=c.betas, eps=c.eps,
|
||||
weight_decay=c.weight_decay_obj, rho=c.rho)
|
||||
|
||||
|
||||
@option(OptimizerConfigs.optimizer, 'AdamWarmupCosineDecay')
|
||||
def _noam_optimizer(c: OptimizerConfigs):
|
||||
from labml_nn.optimizers.adam_warmup_cosine_decay import AdamWarmupCosineDecay
|
||||
|
@ -29,9 +29,7 @@ class Sophia(GenericAdaptiveOptimizer):
|
||||
def __init__(self, params,
|
||||
lr: float = 1e-4, betas: Tuple[float, float] = (0.965, 0.99), eps: float = 1e-16,
|
||||
rho: float = 0.04,
|
||||
training_batch_tokens: int = None,
|
||||
weight_decay: WeightDecay = WeightDecay(),
|
||||
optimized_update: bool = True,
|
||||
defaults: Optional[Dict[str, Any]] = None):
|
||||
"""
|
||||
### Initialize the optimizer
|
||||
@ -42,21 +40,15 @@ class Sophia(GenericAdaptiveOptimizer):
|
||||
* `eps` is $\epsilon$
|
||||
* `pho` is $\rho$
|
||||
* `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
|
||||
* `optimized_update` is a flag whether to optimize the bias correction of the second moment
|
||||
by doing it after adding $\epsilon$
|
||||
* `defaults` is a dictionary of default for group values.
|
||||
This is useful when you want to extend the class `Adam`.
|
||||
"""
|
||||
if training_batch_tokens is None:
|
||||
raise RuntimeError('Please set the number of tokens per training batch.')
|
||||
|
||||
defaults = {} if defaults is None else defaults
|
||||
defaults.update(weight_decay.defaults())
|
||||
defaults.update(dict(rho=rho, training_batch_tokens=training_batch_tokens))
|
||||
defaults.update(dict(rho=rho))
|
||||
super().__init__(params, defaults, lr, betas, eps)
|
||||
|
||||
self.weight_decay = weight_decay
|
||||
self.optimized_update = optimized_update
|
||||
|
||||
def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
|
||||
"""
|
||||
@ -75,7 +67,7 @@ class Sophia(GenericAdaptiveOptimizer):
|
||||
# Exponential moving average of Hessian
|
||||
state['hessian'] = torch.zeros_like(param, memory_format=torch.preserve_format)
|
||||
|
||||
def update_hessian(self, batch_size):
|
||||
def update_hessian(self, n_tokens_training_batch):
|
||||
for group in self.param_groups:
|
||||
beta1, beta2 = group['betas']
|
||||
for p in group['params']:
|
||||
@ -86,7 +78,7 @@ class Sophia(GenericAdaptiveOptimizer):
|
||||
if len(state) == 0:
|
||||
self.init_state(state, group, p)
|
||||
|
||||
state['hessian'].mul_(beta2).addcmul_(p.grad, p.grad, value=(1 - beta2) * batch_size)
|
||||
state['hessian'].mul_(beta2).addcmul_(p.grad, p.grad, value=(1 - beta2) * n_tokens_training_batch)
|
||||
|
||||
def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
|
||||
"""
|
||||
@ -107,7 +99,7 @@ class Sophia(GenericAdaptiveOptimizer):
|
||||
rho = group['rho']
|
||||
|
||||
# Get $m_{t-1}$ and $v_{t-1}$
|
||||
m, hessian = state['exp_avg'], state['hessain']
|
||||
m, hessian = state['exp_avg'], state['hessian']
|
||||
|
||||
# In-place calculation of $m_t$
|
||||
# $$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t$$
|
||||
@ -119,6 +111,6 @@ class Sophia(GenericAdaptiveOptimizer):
|
||||
# Get learning rate
|
||||
lr = group['lr']
|
||||
|
||||
ratio = (m.abs() / (rho * hessian + group['training_batch_tokens'] * group['eps'])).clamp(None, 1)
|
||||
ratio = (m.abs() / (rho * hessian + group['eps'])).clamp(None, 1)
|
||||
|
||||
param.data.addcmul_(m.sign(), ratio, value=-lr)
|
||||
|
147
labml_nn/transformers/basic/with_sophia.py
Normal file
147
labml_nn/transformers/basic/with_sophia.py
Normal file
@ -0,0 +1,147 @@
|
||||
import torch
|
||||
from labml.configs import option
|
||||
|
||||
from labml import experiment, tracker
|
||||
from labml_helpers.train_valid import BatchIndex
|
||||
from labml_nn.optimizers.sophia import Sophia
|
||||
from labml_nn.transformers.basic.autoregressive_experiment import Configs as TransformerAutoRegressionConfigs
|
||||
|
||||
|
||||
class Configs(TransformerAutoRegressionConfigs):
|
||||
"""
|
||||
## Configurations
|
||||
|
||||
This inherits from [`Configs`](autoregressive_experiment.html)
|
||||
"""
|
||||
|
||||
hess_interval: int = 10
|
||||
|
||||
optimizer: Sophia
|
||||
|
||||
def step(self, batch: any, batch_idx: BatchIndex):
|
||||
"""
|
||||
### Training or validation step
|
||||
"""
|
||||
|
||||
# Set training/eval mode
|
||||
self.model.train(self.mode.is_train)
|
||||
|
||||
# Move data to the device
|
||||
data, target = batch[0].to(self.device), batch[1].to(self.device)
|
||||
|
||||
if isinstance(self.optimizer, Sophia) and self.mode.is_train and batch_idx.idx % self.hess_interval == 0:
|
||||
# Whether to capture model outputs
|
||||
with self.mode.update(is_log_activations=False):
|
||||
# Get model outputs.
|
||||
# It's returning a tuple for states when using RNNs.
|
||||
# This is not implemented yet. 😜
|
||||
output, *_ = self.model(data)
|
||||
|
||||
samp_dist = torch.distributions.Categorical(logits=output)
|
||||
y_sample = samp_dist.sample()
|
||||
|
||||
# Calculate and log loss
|
||||
loss = self.loss_func(output, y_sample)
|
||||
tracker.add("loss.hess.", loss)
|
||||
|
||||
# Calculate gradients
|
||||
loss.backward()
|
||||
# Clip gradients
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=self.grad_norm_clip)
|
||||
# Update Hessian estimate
|
||||
self.optimizer.update_hessian(data.numel())
|
||||
# Clear the gradients
|
||||
self.optimizer.zero_grad()
|
||||
else:
|
||||
# Move data to the device
|
||||
data, target = batch[0].to(self.device), batch[1].to(self.device)
|
||||
|
||||
# Update global step (number of tokens processed) when in training mode
|
||||
if self.mode.is_train:
|
||||
tracker.add_global_step(data.shape[0] * data.shape[1])
|
||||
|
||||
# Whether to capture model outputs
|
||||
with self.mode.update(is_log_activations=batch_idx.is_last and self.is_log_model_activations):
|
||||
# Get model outputs.
|
||||
# It's returning a tuple for states when using RNNs.
|
||||
# This is not implemented yet. 😜
|
||||
output, *_ = self.model(data)
|
||||
|
||||
# Calculate and log loss
|
||||
loss = self.loss_func(output, target)
|
||||
tracker.add("loss.", loss)
|
||||
|
||||
# Calculate and log accuracy
|
||||
self.accuracy(output, target)
|
||||
self.accuracy.track()
|
||||
|
||||
self.other_metrics(output, target)
|
||||
|
||||
# Train the model
|
||||
if self.mode.is_train:
|
||||
# Calculate gradients
|
||||
loss.backward()
|
||||
# Clip gradients
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=self.grad_norm_clip)
|
||||
# Take optimizer step
|
||||
self.optimizer.step()
|
||||
# Log the model parameters and gradients on last batch of every epoch
|
||||
if batch_idx.is_last and self.is_log_model_params_grads:
|
||||
tracker.add('model', self.model)
|
||||
# Clear the gradients
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
# Save the tracked metrics
|
||||
tracker.save()
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
# Create experiment
|
||||
experiment.create(name="transformer")
|
||||
# Create configs
|
||||
conf = Configs()
|
||||
# Override configurations
|
||||
experiment.configs(conf, {
|
||||
# Use character level tokenizer
|
||||
'tokenizer': 'character',
|
||||
# Prompt separator is blank
|
||||
'prompt_separator': '',
|
||||
# Starting prompt for sampling
|
||||
'prompt': 'It is ',
|
||||
# Use Tiny Shakespeare dataset
|
||||
'text': 'tiny_shakespeare',
|
||||
|
||||
# Use a context size of $256$
|
||||
'seq_len': 512,
|
||||
# Train for 32 epochs
|
||||
'epochs': 32,
|
||||
# Batch size $32$
|
||||
'batch_size': 16,
|
||||
# Switch between training and validation for $10$ times
|
||||
# per epoch
|
||||
'inner_iterations': 10,
|
||||
|
||||
# Model size
|
||||
'd_model': 256,
|
||||
'transformer.n_heads': 16,
|
||||
'transformer.ffn.d_ff': 1024,
|
||||
|
||||
# Use [Noam optimizer](../../optimizers/noam.html)
|
||||
'optimizer.optimizer': 'Sophia',
|
||||
'optimizer.learning_rate': 3e-4,
|
||||
'optimizer.rho': 0.03,
|
||||
})
|
||||
|
||||
# Set models for saving and loading
|
||||
experiment.add_pytorch_models({'model': conf.model})
|
||||
|
||||
# Start the experiment
|
||||
with experiment.start():
|
||||
# Run training
|
||||
conf.run()
|
||||
|
||||
|
||||
#
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user