mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 09:31:42 +08:00
Update __init__.py
Corrected typo in latex code
This commit is contained in:
@ -67,7 +67,7 @@ If $(\mathbb{P}_{g})$ is represented by a generator $$g_\theta (z)$$ and $z$ is
|
||||
distribution $z \sim p(z)$,
|
||||
|
||||
$$
|
||||
K \ cdot W(\mathbb{P}_r, \mathbb{P}_\theta) =
|
||||
K \cdot W(\mathbb{P}_r, \mathbb{P}_\theta) =
|
||||
\max_{w \in \mathcal{W}}
|
||||
\mathbb{E}_{x \sim \mathbb{P}_r} [f_w(x)]- \mathbb{E}_{z \sim p(z)} [f_w(g_\theta(z))]
|
||||
$$
|
||||
|
Reference in New Issue
Block a user