mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 17:41:37 +08:00
Merge pull request #168 from jakehsiao/patch-3
Add activation for timed embedding and dropout for Residual block in DDPM UNet
This commit is contained in:
@ -26,6 +26,7 @@ from typing import Optional, Tuple, Union, List
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from labml_helpers.module import Module
|
||||
|
||||
@ -91,12 +92,13 @@ class ResidualBlock(Module):
|
||||
Each resolution is processed with two residual blocks.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels: int, out_channels: int, time_channels: int, n_groups: int = 32):
|
||||
def __init__(self, in_channels: int, out_channels: int, time_channels: int, n_groups: int = 32, dropout_rate: float = 0.1):
|
||||
"""
|
||||
* `in_channels` is the number of input channels
|
||||
* `out_channels` is the number of input channels
|
||||
* `time_channels` is the number channels in the time step ($t$) embeddings
|
||||
* `n_groups` is the number of groups for [group normalization](../../normalization/group_norm/index.html)
|
||||
* `dropout_rate` is the dropout rate
|
||||
"""
|
||||
super().__init__()
|
||||
# Group normalization and the first convolution layer
|
||||
@ -118,6 +120,7 @@ class ResidualBlock(Module):
|
||||
|
||||
# Linear layer for time embeddings
|
||||
self.time_emb = nn.Linear(time_channels, out_channels)
|
||||
self.time_act = Swish()
|
||||
|
||||
def forward(self, x: torch.Tensor, t: torch.Tensor):
|
||||
"""
|
||||
@ -127,9 +130,9 @@ class ResidualBlock(Module):
|
||||
# First convolution layer
|
||||
h = self.conv1(self.act1(self.norm1(x)))
|
||||
# Add time embeddings
|
||||
h += self.time_emb(t)[:, :, None, None]
|
||||
h += self.time_emb(self.time_act(t))[:, :, None, None]
|
||||
# Second convolution layer
|
||||
h = self.conv2(self.act2(self.norm2(h)))
|
||||
h = self.conv2(F.dropout(self.act2(self.norm2(h)), self.dropout_rate))
|
||||
|
||||
# Add the shortcut connection and return
|
||||
return h + self.shortcut(x)
|
||||
|
Reference in New Issue
Block a user