mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 06:16:05 +08:00 
			
		
		
		
	summaries
This commit is contained in:
		@ -1,8 +1,19 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Capsule Networks
 | 
				
			||||||
 | 
					summary: >
 | 
				
			||||||
 | 
					  PyTorch implementation/tutorial of Capsule Networks.
 | 
				
			||||||
 | 
					  Capsule networks is neural network architecture that embeds features
 | 
				
			||||||
 | 
					  as capsules and routes them with a voting mechanism to next layer of capsules.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Capsule Networks
 | 
					# Capsule Networks
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
 | 
					This is an implementation of [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Capsule networks is neural network architecture that embeds features as capsules and routes them
 | 
				
			||||||
 | 
					with a voting mechanism to next layer of capsules.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Unlike in other implementations of models, we've included a sample, because
 | 
					Unlike in other implementations of models, we've included a sample, because
 | 
				
			||||||
it is difficult to understand some of the concepts with just the modules.
 | 
					it is difficult to understand some of the concepts with just the modules.
 | 
				
			||||||
[This is the annotated code for a model that use capsules to classify MNIST dataset](mnist.html)
 | 
					[This is the annotated code for a model that use capsules to classify MNIST dataset](mnist.html)
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Classify MNIST digits with Capsule Networks
 | 
				
			||||||
 | 
					summary: Code for training Capsule Networks on MNIST dataset
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Classify MNIST digits with Capsule Networks
 | 
					# Classify MNIST digits with Capsule Networks
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This paper implements the experiment described in paper
 | 
					This paper implements the experiment described in paper
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Generative Adversarial Networks (GAN)
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of Generative Adversarial Networks (GAN) loss functions.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Generative Adversarial Networks (GAN)
 | 
					# Generative Adversarial Networks (GAN)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of
 | 
					This is an implementation of
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,11 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Cycle GAN
 | 
				
			||||||
 | 
					summary: >
 | 
				
			||||||
 | 
					  A simple PyTorch implementation/tutorial of Cycle GAN introduced in paper
 | 
				
			||||||
 | 
					  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Cycle GAN
 | 
					# Cycle GAN
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of paper
 | 
					This is an implementation of paper
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Deep Convolutional Generative Adversarial Networks (DCGAN)
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of Deep Convolutional Generative Adversarial Networks (DCGAN).
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Deep Convolutional Generative Adversarial Networks (DCGAN)
 | 
					# Deep Convolutional Generative Adversarial Networks (DCGAN)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of paper
 | 
					This is an implementation of paper
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Generative Adversarial Networks experiment with MNIST
 | 
				
			||||||
 | 
					summary: This experiment generates MNIST images using multi-layer perceptron.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Generative Adversarial Networks experiment with MNIST
 | 
					# Generative Adversarial Networks experiment with MNIST
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Long Short-Term Memory (LSTM)
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of Long Short-Term Memory (LSTM) modules.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Long Short-Term Memory (LSTM)
 | 
					# Long Short-Term Memory (LSTM)
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,11 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Optimizers
 | 
				
			||||||
 | 
					summary: >
 | 
				
			||||||
 | 
					 A set of PyTorch implementations/tutorials of popular gradient descent based optimizers.
 | 
				
			||||||
 | 
					 Currently includes Adam, AMSGrad and RAdam optimizers.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Optimizers
 | 
					# Optimizers
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Optimizer Implementations
 | 
					## Optimizer Implementations
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: AdaBelief optimizer
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of AdaBelief optimizer.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is based from AdaBelief official implementation
 | 
					This is based from AdaBelief official implementation
 | 
				
			||||||
https://github.com/juntang-zhuang/Adabelief-Optimizer
 | 
					https://github.com/juntang-zhuang/Adabelief-Optimizer
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Adam Optimizer
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of Adam optimizer
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Adam Optimizer
 | 
					# Adam Optimizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of popular optimizer *Adam* from paper
 | 
					This is an implementation of popular optimizer *Adam* from paper
 | 
				
			||||||
 | 
				
			|||||||
@ -1,3 +1,10 @@
 | 
				
			|||||||
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Adam optimizer with warm-up
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of Adam optimizer with warm-up.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from typing import Dict
 | 
					from typing import Dict
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from labml_nn.optimizers import WeightDecay
 | 
					from labml_nn.optimizers import WeightDecay
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: AMSGrad Optimizer
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of AMSGrad optimizer.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# AMSGrad
 | 
					# AMSGrad
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of the paper
 | 
					This is an implementation of the paper
 | 
				
			||||||
 | 
				
			|||||||
@ -1,3 +1,10 @@
 | 
				
			|||||||
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Configurable optimizer module
 | 
				
			||||||
 | 
					summary: This implements a configurable module for optimizers.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from typing import Tuple
 | 
					from typing import Tuple
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: MNIST example to test the optimizers
 | 
				
			||||||
 | 
					summary: This is a simple MNIST example with a CNN model to test the optimizers.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# MNIST example to test the optimizers
 | 
					# MNIST example to test the optimizers
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
import torch.nn as nn
 | 
					import torch.nn as nn
 | 
				
			||||||
 | 
				
			|||||||
@ -1,3 +1,11 @@
 | 
				
			|||||||
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Noam optimizer from Attention is All You Need paper
 | 
				
			||||||
 | 
					summary: >
 | 
				
			||||||
 | 
					  This is a tutorial/implementation of Noam optimizer.
 | 
				
			||||||
 | 
					  Noam optimizer has a warm-up period and then an exponentially decaying learning rate.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
from typing import Dict
 | 
					from typing import Dict
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from labml_nn.optimizers import WeightDecay
 | 
					from labml_nn.optimizers import WeightDecay
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Test performance of Adam implementations
 | 
				
			||||||
 | 
					summary: This experiment compares performance of Adam implementations.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Performance testing Adam
 | 
					# Performance testing Adam
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: RAdam optimizer
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of RAdam optimizer.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Based on https://github.com/LiyuanLucasLiu/RAdam
 | 
					Based on https://github.com/LiyuanLucasLiu/RAdam
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Recurrent Highway Networks
 | 
				
			||||||
 | 
					summary: A simple PyTorch implementation/tutorial of Recurrent Highway Networks.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Recurrent Highway Networks
 | 
					# Recurrent Highway Networks
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of [Recurrent Highway Networks](https://arxiv.org/abs/1607.03474).
 | 
					This is an implementation of [Recurrent Highway Networks](https://arxiv.org/abs/1607.03474).
 | 
				
			||||||
 | 
				
			|||||||
@ -1,5 +1,13 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
# RL Algorithms
 | 
					---
 | 
				
			||||||
 | 
					title: Reinforcement Learning Algorithms
 | 
				
			||||||
 | 
					summary: >
 | 
				
			||||||
 | 
					  This is a collection of PyTorch implementations/tutorials of reinforcement learning algorithms.
 | 
				
			||||||
 | 
					  It currently includes Proximal Policy Optimization, Generalized Advantage Estimation, and
 | 
				
			||||||
 | 
					  Deep Q Networks.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Reinforcement Learning Algorithms
 | 
				
			||||||
 | 
					
 | 
				
			||||||
* [Proximal Policy Optimization](ppo)
 | 
					* [Proximal Policy Optimization](ppo)
 | 
				
			||||||
    * [This is an experiment](ppo/experiment.html) that runs a PPO agent on Atari Breakout.
 | 
					    * [This is an experiment](ppo/experiment.html) that runs a PPO agent on Atari Breakout.
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,14 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Deep Q Networks (DQN)
 | 
				
			||||||
 | 
					summary: >
 | 
				
			||||||
 | 
					  This is a PyTorch implementation/tutorial of Deep Q Networks (DQN) from paper
 | 
				
			||||||
 | 
					  Playing Atari with Deep Reinforcement Learning.
 | 
				
			||||||
 | 
					  This includes dueling network architecture, a prioritized replay buffer and
 | 
				
			||||||
 | 
					  double-Q-network training.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Deep Q Networks (DQN)
 | 
					# Deep Q Networks (DQN)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of paper
 | 
					This is an implementation of paper
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: DQN Experiment with Atari Breakout
 | 
				
			||||||
 | 
					summary: Implementation of DQN experiment with Atari Breakout
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# DQN Experiment with Atari Breakout
 | 
					# DQN Experiment with Atari Breakout
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This experiment trains a Deep Q Network (DQN) to play Atari Breakout game on OpenAI Gym.
 | 
					This experiment trains a Deep Q Network (DQN) to play Atari Breakout game on OpenAI Gym.
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Deep Q Network (DQN) Model
 | 
				
			||||||
 | 
					summary: Implementation of neural network model for Deep Q Network (DQN).
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Deep Q Network (DQN) Model
 | 
					# Deep Q Network (DQN) Model
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Prioritized Experience Replay Buffer
 | 
				
			||||||
 | 
					summary: Annotated implementation of prioritized experience replay using a binary segment tree.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Prioritized Experience Replay Buffer
 | 
					# Prioritized Experience Replay Buffer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This implements paper [Prioritized experience replay](https://arxiv.org/abs/1511.05952),
 | 
					This implements paper [Prioritized experience replay](https://arxiv.org/abs/1511.05952),
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Atari wrapper with multi-processing
 | 
				
			||||||
 | 
					summary: This implements the Atari games with multi-processing.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Atari wrapper with multi-processing
 | 
					# Atari wrapper with multi-processing
 | 
				
			||||||
"""
 | 
					"""
 | 
				
			||||||
import multiprocessing
 | 
					import multiprocessing
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,10 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Proximal Policy Optimization (PPO)
 | 
				
			||||||
 | 
					summary: >
 | 
				
			||||||
 | 
					 An annotated implementation of Proximal Policy Optimization (PPO) algorithm in PyTorch.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Proximal Policy Optimization (PPO)
 | 
					# Proximal Policy Optimization (PPO)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is a an implementation of [Proximal Policy Optimization - PPO](https://arxiv.org/abs/1707.06347).
 | 
					This is a an implementation of [Proximal Policy Optimization - PPO](https://arxiv.org/abs/1707.06347).
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: PPO Experiment with Atari Breakout
 | 
				
			||||||
 | 
					summary: Annotated implementation to train a PPO agent on Atari Breakout game.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# PPO Experiment with Atari Breakout
 | 
					# PPO Experiment with Atari Breakout
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This experiment trains Proximal Policy Optimization (PPO) agent  Atari Breakout game on OpenAI Gym.
 | 
					This experiment trains Proximal Policy Optimization (PPO) agent  Atari Breakout game on OpenAI Gym.
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,9 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Generalized Advantage Estimation (GAE)
 | 
				
			||||||
 | 
					summary: A PyTorch implementation/tutorial of Generalized Advantage Estimation (GAE).
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Generalized Advantage Estimation (GAE)
 | 
					# Generalized Advantage Estimation (GAE)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an implementation of paper [Generalized Advantage Estimation](https://arxiv.org/abs/1506.02438).
 | 
					This is an implementation of paper [Generalized Advantage Estimation](https://arxiv.org/abs/1506.02438).
 | 
				
			||||||
 | 
				
			|||||||
@ -1,4 +1,11 @@
 | 
				
			|||||||
"""
 | 
					"""
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					title: Sketch RNN
 | 
				
			||||||
 | 
					summary: >
 | 
				
			||||||
 | 
					  This is an annotated PyTorch implementation of the Sketch RNN from paper A Neural Representation of Sketch Drawings.
 | 
				
			||||||
 | 
					  Sketch RNN is a sequence-to-sequence model that generates sketches of objects such as bicycles, cats, etc.
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Sketch RNN
 | 
					# Sketch RNN
 | 
				
			||||||
 | 
					
 | 
				
			||||||
This is an annotated implementation of the paper
 | 
					This is an annotated implementation of the paper
 | 
				
			||||||
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user