Files
Varuna Jayasiri 443458e812 summaries
2020-12-10 08:42:06 +05:30

253 lines
9.1 KiB
Python

"""
---
title: DQN Experiment with Atari Breakout
summary: Implementation of DQN experiment with Atari Breakout
---
# DQN Experiment with Atari Breakout
This experiment trains a Deep Q Network (DQN) to play Atari Breakout game on OpenAI Gym.
It runs the [game environments on multiple processes](../game.html) to sample efficiently.
"""
import numpy as np
import torch
from labml import tracker, experiment, logger, monit
from labml_helpers.schedule import Piecewise
from labml_nn.rl.dqn import QFuncLoss
from labml_nn.rl.dqn.model import Model
from labml_nn.rl.dqn.replay_buffer import ReplayBuffer
from labml_nn.rl.game import Worker
# Select device
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
def obs_to_torch(obs: np.ndarray) -> torch.Tensor:
"""Scale observations from `[0, 255]` to `[0, 1]`"""
return torch.tensor(obs, dtype=torch.float32, device=device) / 255.
class Trainer:
"""
## Trainer
"""
def __init__(self):
# #### Configurations
# number of workers
self.n_workers = 8
# steps sampled on each update
self.worker_steps = 4
# number of training iterations
self.train_epochs = 8
# number of updates
self.updates = 1_000_000
# size of mini batch for training
self.mini_batch_size = 32
# exploration as a function of updates
self.exploration_coefficient = Piecewise(
[
(0, 1.0),
(25_000, 0.1),
(self.updates / 2, 0.01)
], outside_value=0.01)
# update target network every 250 update
self.update_target_model = 250
# $\beta$ for replay buffer as a function of updates
self.prioritized_replay_beta = Piecewise(
[
(0, 0.4),
(self.updates, 1)
], outside_value=1)
# Replay buffer with $\alpha = 0.6$. Capacity of the replay buffer must be a power of 2.
self.replay_buffer = ReplayBuffer(2 ** 14, 0.6)
# Model for sampling and training
self.model = Model().to(device)
# target model to get $\color{orange}Q(s';\color{orange}{\theta_i^{-}})$
self.target_model = Model().to(device)
# create workers
self.workers = [Worker(47 + i) for i in range(self.n_workers)]
# initialize tensors for observations
self.obs = np.zeros((self.n_workers, 4, 84, 84), dtype=np.uint8)
for worker in self.workers:
worker.child.send(("reset", None))
for i, worker in enumerate(self.workers):
self.obs[i] = worker.child.recv()
# loss function
self.loss_func = QFuncLoss(0.99)
# optimizer
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=2.5e-4)
def _sample_action(self, q_value: torch.Tensor, exploration_coefficient: float):
"""
#### $\epsilon$-greedy Sampling
When sampling actions we use a $\epsilon$-greedy strategy, where we
take a greedy action with probabiliy $1 - \epsilon$ and
take a random action with probability $\epsilon$.
We refer to $\epsilon$ as `exploration_coefficient`.
"""
# Sampling doesn't need gradients
with torch.no_grad():
# Sample the action with highest Q-value. This is the greedy action.
greedy_action = torch.argmax(q_value, dim=-1)
# Uniformly sample and action
random_action = torch.randint(q_value.shape[-1], greedy_action.shape, device=q_value.device)
# Whether to chose greedy action or the random action
is_choose_rand = torch.rand(greedy_action.shape, device=q_value.device) < exploration_coefficient
# Pick the action based on `is_choose_rand`
return torch.where(is_choose_rand, random_action, greedy_action).cpu().numpy()
def sample(self, exploration_coefficient: float):
"""### Sample data"""
# This doesn't need gradients
with torch.no_grad():
# Sample `worker_steps`
for t in range(self.worker_steps):
# Get Q_values for the current observation
q_value = self.model(obs_to_torch(self.obs))
# Sample actions
actions = self._sample_action(q_value, exploration_coefficient)
# Run sampled actions on each worker
for w, worker in enumerate(self.workers):
worker.child.send(("step", actions[w]))
# Collect information from each worker
for w, worker in enumerate(self.workers):
# Get results after executing the actions
next_obs, reward, done, info = worker.child.recv()
# Add transition to replay buffer
self.replay_buffer.add(self.obs[w], actions[w], reward, next_obs, done)
# update episode information
# collect episode info, which is available if an episode finished;
# this includes total reward and length of the episode -
# look at `Game` to see how it works.
if info:
tracker.add('reward', info['reward'])
tracker.add('length', info['length'])
# update current observation
self.obs[w] = next_obs
def train(self, beta: float):
"""
### Train the model
"""
for _ in range(self.train_epochs):
# Sample from priority replay buffer
samples = self.replay_buffer.sample(self.mini_batch_size, beta)
# Get the predicted Q-value
q_value = self.model(obs_to_torch(samples['obs']))
# Get the Q-values of the next state for [Double Q-learning](index.html).
# Gradients shouldn't propagate for these
with torch.no_grad():
# Get $\color{cyan}Q(s';\color{cyan}{\theta_i})$
double_q_value = self.model(obs_to_torch(samples['next_obs']))
# Get $\color{orange}Q(s';\color{orange}{\theta_i^{-}})$
target_q_value = self.target_model(obs_to_torch(samples['next_obs']))
# Compute Temporal Difference (TD) errors, $\delta$, and the loss, $\mathcal{L}(\theta)$.
td_errors, loss = self.loss_func(q_value,
q_value.new_tensor(samples['action']),
double_q_value, target_q_value,
q_value.new_tensor(samples['done']),
q_value.new_tensor(samples['reward']),
q_value.new_tensor(samples['weights']))
# Calculate priorities for replay buffer $p_i = |\delta_i| + \epsilon$
new_priorities = np.abs(td_errors.cpu().numpy()) + 1e-6
# Update replay buffer priorities
self.replay_buffer.update_priorities(samples['indexes'], new_priorities)
# Zero out the previously calculated gradients
self.optimizer.zero_grad()
# Calculate gradients
loss.backward()
# Clip gradients
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=0.5)
# Update parameters based on gradients
self.optimizer.step()
def run_training_loop(self):
"""
### Run training loop
"""
# Last 100 episode information
tracker.set_queue('reward', 100, True)
tracker.set_queue('length', 100, True)
# Copy to target network initially
self.target_model.load_state_dict(self.model.state_dict())
for update in monit.loop(self.updates):
# $\epsilon$, exploration fraction
exploration = self.exploration_coefficient(update)
tracker.add('exploration', exploration)
# $\beta$ for prioritized replay
beta = self.prioritized_replay_beta(update)
tracker.add('beta', beta)
# Sample with current policy
self.sample(exploration)
# Start training after the buffer is full
if self.replay_buffer.is_full():
# Train the model
self.train(beta)
# Periodically update target network
if update % self.update_target_model == 0:
self.target_model.load_state_dict(self.model.state_dict())
# Save tracked indicators.
tracker.save()
# Add a new line to the screen periodically
if (update + 1) % 1_000 == 0:
logger.log()
def destroy(self):
"""
### Destroy
Stop the workers
"""
for worker in self.workers:
worker.child.send(("close", None))
def main():
# Create the experiment
experiment.create(name='dqn')
# Initialize the trainer
m = Trainer()
# Run and monitor the experiment
with experiment.start():
m.run_training_loop()
# Stop the workers
m.destroy()
# ## Run it
if __name__ == "__main__":
main()