capsnet readme

This commit is contained in:
Varuna Jayasiri
2021-03-05 15:17:54 +05:30
parent bfe089fd80
commit 38f994a2c0
7 changed files with 156 additions and 9 deletions

View File

@ -77,7 +77,7 @@
<p>Capsule network is a neural network architecture that embeds features
as capsules and routes them with a voting mechanism to next layer of capsules.</p>
<p>Unlike in other implementations of models, we&rsquo;ve included a sample, because
it is difficult to understand some of the concepts with just the modules.
it is difficult to understand some concepts with just the modules.
<a href="mnist.html">This is the annotated code for a model that uses capsules to classify MNIST dataset</a></p>
<p>This file holds the implementations of the core modules of Capsule Networks.</p>
<p>I used <a href="https://github.com/jindongwang/Pytorch-CapsuleNet">jindongwang/Pytorch-CapsuleNet</a> to clarify some

View File

@ -0,0 +1,126 @@
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content=""/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Capsule Networks"/>
<meta name="twitter:description" content=""/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/capsule_networks/readme.html"/>
<meta property="og:title" content="Capsule Networks"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Capsule Networks"/>
<meta property="og:description" content=""/>
<title>Capsule Networks</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/capsule_networks/readme.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">capsule_networks</a>
</p>
<p>
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/capsule_networks/readme.md">
<img alt="Github"
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
style="max-width:100%;"/></a>
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
rel="nofollow">
<img alt="Join Slact"
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1><a href="https://nn.labml.ai/capsule_networks/index.html">Capsule Networks</a></h1>
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation/tutorial of
<a href="https://arxiv.org/abs/1710.09829">Dynamic Routing Between Capsules</a>.</p>
<p>Capsule network is a neural network architecture that embeds features
as capsules and routes them with a voting mechanism to next layer of capsules.</p>
<p>Unlike in other implementations of models, we&rsquo;ve included a sample, because
it is difficult to understand some concepts with just the modules.
<a href="mnist.html">This is the annotated code for a model that uses capsules to classify MNIST dataset</a></p>
<p>This file holds the implementations of the core modules of Capsule Networks.</p>
<p>I used <a href="https://github.com/jindongwang/Pytorch-CapsuleNet">jindongwang/Pytorch-CapsuleNet</a> to clarify some
confusions I had with the paper.</p>
<p>Here&rsquo;s a notebook for training a Capsule Network on MNIST dataset.</p>
<p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/capsule_networks/mnist.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
<a href="https://app.labml.ai/run/e7c08e08586711ebb3e30242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
</div>
<div class='code'>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
</body>
</html>

View File

@ -123,7 +123,7 @@
\hat{A_t^{(\infty)}} &= r_t + \gamma r_{t+1} +\gamma^2 r_{t+1} + ... - V(s)
\end{align}</script>
</p>
<p>$\hat{A_t^{(1)}}$ is high bias, low variance whilst
<p>$\hat{A_t^{(1)}}$ is high bias, low variance, whilst
$\hat{A_t^{(\infty)}}$ is unbiased, high variance.</p>
<p>We take a weighted average of $\hat{A_t^{(k)}}$ to balance bias and variance.
This is called Generalized Advantage Estimation.

View File

@ -76,9 +76,9 @@
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of
<a href="https://arxiv.org/abs/1707.06347">Proximal Policy Optimization - PPO</a>.</p>
<p>PPO is a policy gradient method for reinforcement learning.
Simple policy gradient methods one do a single gradient update per sample (or a set of samples).
Doing multiple gradient steps for a singe sample causes problems
because the policy deviates too much producing a bad policy.
Simple policy gradient methods do a single gradient update per sample (or a set of samples).
Doing multiple gradient steps for a single sample causes problems
because the policy deviates too much, producing a bad policy.
PPO lets us do multiple gradient updates per sample by trying to keep the
policy close to the policy that was used to sample data.
It does so by clipping gradient flow if the updated policy
@ -172,7 +172,7 @@ J(\pi_\theta) - J(\pi_{\theta_{OLD}})
</p>
<p>Then we assume $d^\pi_\theta(s)$ and $d^\pi_{\theta_{OLD}}(s)$ are similar.
The error we introduce to $J(\pi_\theta) - J(\pi_{\theta_{OLD}})$
by this assumtion is bound by the KL divergence between
by this assumption is bound by the KL divergence between
$\pi_\theta$ and $\pi_{\theta_{OLD}}$.
<a href="https://arxiv.org/abs/1705.10528">Constrained Policy Optimization</a>
shows the proof of this. I haven&rsquo;t read it.</p>

View File

@ -659,14 +659,14 @@
<url>
<loc>https://nn.labml.ai/rl/ppo/index.html</loc>
<lastmod>2021-02-23T16:30:00+00:00</lastmod>
<lastmod>2021-03-05T16:30:00+00:00</lastmod>
<priority>1.00</priority>
</url>
<url>
<loc>https://nn.labml.ai/rl/ppo/gae.html</loc>
<lastmod>2021-01-30T16:30:00+00:00</lastmod>
<lastmod>2021-03-05T16:30:00+00:00</lastmod>
<priority>1.00</priority>
</url>

View File

@ -16,7 +16,7 @@ Capsule network is a neural network architecture that embeds features
as capsules and routes them with a voting mechanism to next layer of capsules.
Unlike in other implementations of models, we've included a sample, because
it is difficult to understand some of the concepts with just the modules.
it is difficult to understand some concepts with just the modules.
[This is the annotated code for a model that uses capsules to classify MNIST dataset](mnist.html)
This file holds the implementations of the core modules of Capsule Networks.

View File

@ -0,0 +1,21 @@
# [Capsule Networks](https://nn.labml.ai/capsule_networks/index.html)
This is a [PyTorch](https://pytorch.org) implementation/tutorial of
[Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
Capsule network is a neural network architecture that embeds features
as capsules and routes them with a voting mechanism to next layer of capsules.
Unlike in other implementations of models, we've included a sample, because
it is difficult to understand some concepts with just the modules.
[This is the annotated code for a model that uses capsules to classify MNIST dataset](mnist.html)
This file holds the implementations of the core modules of Capsule Networks.
I used [jindongwang/Pytorch-CapsuleNet](https://github.com/jindongwang/Pytorch-CapsuleNet) to clarify some
confusions I had with the paper.
Here's a notebook for training a Capsule Network on MNIST dataset.
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/capsule_networks/mnist.ipynb)
[![View Run](https://img.shields.io/badge/labml-experiment-brightgreen)](https://app.labml.ai/run/e7c08e08586711ebb3e30242ac1c0002)