mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 01:13:00 +08:00
capsnet readme
This commit is contained in:
@ -77,7 +77,7 @@
|
||||
<p>Capsule network is a neural network architecture that embeds features
|
||||
as capsules and routes them with a voting mechanism to next layer of capsules.</p>
|
||||
<p>Unlike in other implementations of models, we’ve included a sample, because
|
||||
it is difficult to understand some of the concepts with just the modules.
|
||||
it is difficult to understand some concepts with just the modules.
|
||||
<a href="mnist.html">This is the annotated code for a model that uses capsules to classify MNIST dataset</a></p>
|
||||
<p>This file holds the implementations of the core modules of Capsule Networks.</p>
|
||||
<p>I used <a href="https://github.com/jindongwang/Pytorch-CapsuleNet">jindongwang/Pytorch-CapsuleNet</a> to clarify some
|
||||
|
126
docs/capsule_networks/readme.html
Normal file
126
docs/capsule_networks/readme.html
Normal file
@ -0,0 +1,126 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||||
<meta name="description" content=""/>
|
||||
|
||||
<meta name="twitter:card" content="summary"/>
|
||||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta name="twitter:title" content="Capsule Networks"/>
|
||||
<meta name="twitter:description" content=""/>
|
||||
<meta name="twitter:site" content="@labmlai"/>
|
||||
<meta name="twitter:creator" content="@labmlai"/>
|
||||
|
||||
<meta property="og:url" content="https://nn.labml.ai/capsule_networks/readme.html"/>
|
||||
<meta property="og:title" content="Capsule Networks"/>
|
||||
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta property="og:site_name" content="LabML Neural Networks"/>
|
||||
<meta property="og:type" content="object"/>
|
||||
<meta property="og:title" content="Capsule Networks"/>
|
||||
<meta property="og:description" content=""/>
|
||||
|
||||
<title>Capsule Networks</title>
|
||||
<link rel="shortcut icon" href="/icon.png"/>
|
||||
<link rel="stylesheet" href="../pylit.css">
|
||||
<link rel="canonical" href="https://nn.labml.ai/capsule_networks/readme.html"/>
|
||||
<!-- Global site tag (gtag.js) - Google Analytics -->
|
||||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
||||
<script>
|
||||
window.dataLayer = window.dataLayer || [];
|
||||
|
||||
function gtag() {
|
||||
dataLayer.push(arguments);
|
||||
}
|
||||
|
||||
gtag('js', new Date());
|
||||
|
||||
gtag('config', 'G-4V3HC8HBLH');
|
||||
</script>
|
||||
</head>
|
||||
<body>
|
||||
<div id='container'>
|
||||
<div id="background"></div>
|
||||
<div class='section'>
|
||||
<div class='docs'>
|
||||
<p>
|
||||
<a class="parent" href="/">home</a>
|
||||
<a class="parent" href="index.html">capsule_networks</a>
|
||||
</p>
|
||||
<p>
|
||||
|
||||
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/capsule_networks/readme.md">
|
||||
<img alt="Github"
|
||||
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
||||
rel="nofollow">
|
||||
<img alt="Join Slact"
|
||||
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
||||
style="max-width:100%;"/></a>
|
||||
<a href="https://twitter.com/labmlai"
|
||||
rel="nofollow">
|
||||
<img alt="Twitter"
|
||||
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
||||
style="max-width:100%;"/></a>
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-0'>
|
||||
<div class='docs'>
|
||||
<div class='section-link'>
|
||||
<a href='#section-0'>#</a>
|
||||
</div>
|
||||
<h1><a href="https://nn.labml.ai/capsule_networks/index.html">Capsule Networks</a></h1>
|
||||
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation/tutorial of
|
||||
<a href="https://arxiv.org/abs/1710.09829">Dynamic Routing Between Capsules</a>.</p>
|
||||
<p>Capsule network is a neural network architecture that embeds features
|
||||
as capsules and routes them with a voting mechanism to next layer of capsules.</p>
|
||||
<p>Unlike in other implementations of models, we’ve included a sample, because
|
||||
it is difficult to understand some concepts with just the modules.
|
||||
<a href="mnist.html">This is the annotated code for a model that uses capsules to classify MNIST dataset</a></p>
|
||||
<p>This file holds the implementations of the core modules of Capsule Networks.</p>
|
||||
<p>I used <a href="https://github.com/jindongwang/Pytorch-CapsuleNet">jindongwang/Pytorch-CapsuleNet</a> to clarify some
|
||||
confusions I had with the paper.</p>
|
||||
<p>Here’s a notebook for training a Capsule Network on MNIST dataset.</p>
|
||||
<p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/capsule_networks/mnist.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
|
||||
<a href="https://app.labml.ai/run/e7c08e08586711ebb3e30242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
||||
</script>
|
||||
<!-- MathJax configuration -->
|
||||
<script type="text/x-mathjax-config">
|
||||
MathJax.Hub.Config({
|
||||
tex2jax: {
|
||||
inlineMath: [ ['$','$'] ],
|
||||
displayMath: [ ['$$','$$'] ],
|
||||
processEscapes: true,
|
||||
processEnvironments: true
|
||||
},
|
||||
// Center justify equations in code and markdown cells. Elsewhere
|
||||
// we use CSS to left justify single line equations in code cells.
|
||||
displayAlign: 'center',
|
||||
"HTML-CSS": { fonts: ["TeX"] }
|
||||
});
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
@ -123,7 +123,7 @@
|
||||
\hat{A_t^{(\infty)}} &= r_t + \gamma r_{t+1} +\gamma^2 r_{t+1} + ... - V(s)
|
||||
\end{align}</script>
|
||||
</p>
|
||||
<p>$\hat{A_t^{(1)}}$ is high bias, low variance whilst
|
||||
<p>$\hat{A_t^{(1)}}$ is high bias, low variance, whilst
|
||||
$\hat{A_t^{(\infty)}}$ is unbiased, high variance.</p>
|
||||
<p>We take a weighted average of $\hat{A_t^{(k)}}$ to balance bias and variance.
|
||||
This is called Generalized Advantage Estimation.
|
||||
|
@ -76,9 +76,9 @@
|
||||
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of
|
||||
<a href="https://arxiv.org/abs/1707.06347">Proximal Policy Optimization - PPO</a>.</p>
|
||||
<p>PPO is a policy gradient method for reinforcement learning.
|
||||
Simple policy gradient methods one do a single gradient update per sample (or a set of samples).
|
||||
Doing multiple gradient steps for a singe sample causes problems
|
||||
because the policy deviates too much producing a bad policy.
|
||||
Simple policy gradient methods do a single gradient update per sample (or a set of samples).
|
||||
Doing multiple gradient steps for a single sample causes problems
|
||||
because the policy deviates too much, producing a bad policy.
|
||||
PPO lets us do multiple gradient updates per sample by trying to keep the
|
||||
policy close to the policy that was used to sample data.
|
||||
It does so by clipping gradient flow if the updated policy
|
||||
@ -172,7 +172,7 @@ J(\pi_\theta) - J(\pi_{\theta_{OLD}})
|
||||
</p>
|
||||
<p>Then we assume $d^\pi_\theta(s)$ and $d^\pi_{\theta_{OLD}}(s)$ are similar.
|
||||
The error we introduce to $J(\pi_\theta) - J(\pi_{\theta_{OLD}})$
|
||||
by this assumtion is bound by the KL divergence between
|
||||
by this assumption is bound by the KL divergence between
|
||||
$\pi_\theta$ and $\pi_{\theta_{OLD}}$.
|
||||
<a href="https://arxiv.org/abs/1705.10528">Constrained Policy Optimization</a>
|
||||
shows the proof of this. I haven’t read it.</p>
|
||||
|
@ -659,14 +659,14 @@
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/rl/ppo/index.html</loc>
|
||||
<lastmod>2021-02-23T16:30:00+00:00</lastmod>
|
||||
<lastmod>2021-03-05T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/rl/ppo/gae.html</loc>
|
||||
<lastmod>2021-01-30T16:30:00+00:00</lastmod>
|
||||
<lastmod>2021-03-05T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
|
@ -16,7 +16,7 @@ Capsule network is a neural network architecture that embeds features
|
||||
as capsules and routes them with a voting mechanism to next layer of capsules.
|
||||
|
||||
Unlike in other implementations of models, we've included a sample, because
|
||||
it is difficult to understand some of the concepts with just the modules.
|
||||
it is difficult to understand some concepts with just the modules.
|
||||
[This is the annotated code for a model that uses capsules to classify MNIST dataset](mnist.html)
|
||||
|
||||
This file holds the implementations of the core modules of Capsule Networks.
|
||||
|
21
labml_nn/capsule_networks/readme.md
Normal file
21
labml_nn/capsule_networks/readme.md
Normal file
@ -0,0 +1,21 @@
|
||||
# [Capsule Networks](https://nn.labml.ai/capsule_networks/index.html)
|
||||
|
||||
This is a [PyTorch](https://pytorch.org) implementation/tutorial of
|
||||
[Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
|
||||
|
||||
Capsule network is a neural network architecture that embeds features
|
||||
as capsules and routes them with a voting mechanism to next layer of capsules.
|
||||
|
||||
Unlike in other implementations of models, we've included a sample, because
|
||||
it is difficult to understand some concepts with just the modules.
|
||||
[This is the annotated code for a model that uses capsules to classify MNIST dataset](mnist.html)
|
||||
|
||||
This file holds the implementations of the core modules of Capsule Networks.
|
||||
|
||||
I used [jindongwang/Pytorch-CapsuleNet](https://github.com/jindongwang/Pytorch-CapsuleNet) to clarify some
|
||||
confusions I had with the paper.
|
||||
|
||||
Here's a notebook for training a Capsule Network on MNIST dataset.
|
||||
|
||||
[](https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/capsule_networks/mnist.ipynb)
|
||||
[](https://app.labml.ai/run/e7c08e08586711ebb3e30242ac1c0002)
|
Reference in New Issue
Block a user