mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 01:13:00 +08:00
353 lines
19 KiB
HTML
353 lines
19 KiB
HTML
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
|
<meta name="description" content="An annotated implementation of Proximal Policy Optimization (PPO) algorithm in PyTorch."/>
|
|
|
|
<meta name="twitter:card" content="summary"/>
|
|
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta name="twitter:title" content="Proximal Policy Optimization (PPO)"/>
|
|
<meta name="twitter:description" content="An annotated implementation of Proximal Policy Optimization (PPO) algorithm in PyTorch."/>
|
|
<meta name="twitter:site" content="@labmlai"/>
|
|
<meta name="twitter:creator" content="@labmlai"/>
|
|
|
|
<meta property="og:url" content="https://nn.labml.ai/rl/ppo/index.html"/>
|
|
<meta property="og:title" content="Proximal Policy Optimization (PPO)"/>
|
|
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
|
<meta property="og:site_name" content="LabML Neural Networks"/>
|
|
<meta property="og:type" content="object"/>
|
|
<meta property="og:title" content="Proximal Policy Optimization (PPO)"/>
|
|
<meta property="og:description" content="An annotated implementation of Proximal Policy Optimization (PPO) algorithm in PyTorch."/>
|
|
|
|
<title>Proximal Policy Optimization (PPO)</title>
|
|
<link rel="shortcut icon" href="/icon.png"/>
|
|
<link rel="stylesheet" href="../../pylit.css">
|
|
<link rel="canonical" href="https://nn.labml.ai/rl/ppo/index.html"/>
|
|
<!-- Global site tag (gtag.js) - Google Analytics -->
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
|
|
<script>
|
|
window.dataLayer = window.dataLayer || [];
|
|
|
|
function gtag() {
|
|
dataLayer.push(arguments);
|
|
}
|
|
|
|
gtag('js', new Date());
|
|
|
|
gtag('config', 'G-4V3HC8HBLH');
|
|
</script>
|
|
</head>
|
|
<body>
|
|
<div id='container'>
|
|
<div id="background"></div>
|
|
<div class='section'>
|
|
<div class='docs'>
|
|
<p>
|
|
<a class="parent" href="/">home</a>
|
|
<a class="parent" href="../index.html">rl</a>
|
|
<a class="parent" href="index.html">ppo</a>
|
|
</p>
|
|
<p>
|
|
|
|
<a href="https://github.com/lab-ml/labml_nn/tree/master/labml_nn/rl/ppo/__init__.py">
|
|
<img alt="Github"
|
|
src="https://img.shields.io/github/stars/lab-ml/nn?style=social"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://join.slack.com/t/labforml/shared_invite/zt-egj9zvq9-Dl3hhZqobexgT7aVKnD14g/"
|
|
rel="nofollow">
|
|
<img alt="Join Slact"
|
|
src="https://img.shields.io/badge/slack-chat-green.svg?logo=slack"
|
|
style="max-width:100%;"/></a>
|
|
<a href="https://twitter.com/labmlai"
|
|
rel="nofollow">
|
|
<img alt="Twitter"
|
|
src="https://img.shields.io/twitter/follow/labmlai?style=social"
|
|
style="max-width:100%;"/></a>
|
|
</p>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-0'>
|
|
<div class='docs doc-strings'>
|
|
<div class='section-link'>
|
|
<a href='#section-0'>#</a>
|
|
</div>
|
|
<h1>Proximal Policy Optimization (PPO)</h1>
|
|
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of
|
|
<a href="https://arxiv.org/abs/1707.06347">Proximal Policy Optimization - PPO</a>.</p>
|
|
<p>PPO is a policy gradient method for reinforcement learning.
|
|
Simple policy gradient methods do a single gradient update per sample (or a set of samples).
|
|
Doing multiple gradient steps for a single sample causes problems
|
|
because the policy deviates too much, producing a bad policy.
|
|
PPO lets us do multiple gradient updates per sample by trying to keep the
|
|
policy close to the policy that was used to sample data.
|
|
It does so by clipping gradient flow if the updated policy
|
|
is not close to the policy used to sample the data.</p>
|
|
<p>You can find an experiment that uses it <a href="experiment.html">here</a>.
|
|
The experiment uses <a href="gae.html">Generalized Advantage Estimation</a>.</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">26</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
|
|
<span class="lineno">27</span>
|
|
<span class="lineno">28</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
|
|
<span class="lineno">29</span><span class="kn">from</span> <span class="nn">labml_nn.rl.ppo.gae</span> <span class="kn">import</span> <span class="n">GAE</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-1'>
|
|
<div class='docs doc-strings'>
|
|
<div class='section-link'>
|
|
<a href='#section-1'>#</a>
|
|
</div>
|
|
<h2>PPO Loss</h2>
|
|
<p>Here’s how the PPO update rule is derived.</p>
|
|
<p>We want to maximize policy reward
|
|
<script type="math/tex; mode=display">\max_\theta J(\pi_\theta) =
|
|
\mathop{\mathbb{E}}_{\tau \sim \pi_\theta}\Biggl[\sum_{t=0}^\infty \gamma^t r_t \Biggr]</script>
|
|
where $r$ is the reward, $\pi$ is the policy, $\tau$ is a trajectory sampled from policy,
|
|
and $\gamma$ is the discount factor between $[0, 1]$.</p>
|
|
<p>
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
\mathbb{E}_{\tau \sim \pi_\theta} \Biggl[
|
|
\sum_{t=0}^\infty \gamma^t A^{\pi_{OLD}}(s_t, a_t)
|
|
\Biggr] &=
|
|
\\
|
|
\mathbb{E}_{\tau \sim \pi_\theta} \Biggl[
|
|
\sum_{t=0}^\infty \gamma^t \Bigl(
|
|
Q^{\pi_{OLD}}(s_t, a_t) - V^{\pi_{OLD}}(s_t)
|
|
\Bigr)
|
|
\Biggr] &=
|
|
\\
|
|
\mathbb{E}_{\tau \sim \pi_\theta} \Biggl[
|
|
\sum_{t=0}^\infty \gamma^t \Bigl(
|
|
r_t + V^{\pi_{OLD}}(s_{t+1}) - V^{\pi_{OLD}}(s_t)
|
|
\Bigr)
|
|
\Biggr] &=
|
|
\\
|
|
\mathbb{E}_{\tau \sim \pi_\theta} \Biggl[
|
|
\sum_{t=0}^\infty \gamma^t \Bigl(
|
|
r_t
|
|
\Bigr)
|
|
\Biggr]
|
|
- \mathbb{E}_{\tau \sim \pi_\theta}
|
|
\Biggl[V^{\pi_{OLD}}(s_0)\Biggr] &=
|
|
J(\pi_\theta) - J(\pi_{\theta_{OLD}})
|
|
\end{align}</script>
|
|
</p>
|
|
<p>So,
|
|
<script type="math/tex; mode=display">\max_\theta J(\pi_\theta) =
|
|
\max_\theta \mathbb{E}_{\tau \sim \pi_\theta} \Biggl[
|
|
\sum_{t=0}^\infty \gamma^t A^{\pi_{OLD}}(s_t, a_t)
|
|
\Biggr]</script>
|
|
</p>
|
|
<p>Define discounted-future state distribution,
|
|
<script type="math/tex; mode=display">d^\pi(s) = (1 - \gamma) \sum_{t=0}^\infty \gamma^t P(s_t = s | \pi)</script>
|
|
</p>
|
|
<p>Then,
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
J(\pi_\theta) - J(\pi_{\theta_{OLD}})
|
|
&= \mathbb{E}_{\tau \sim \pi_\theta} \Biggl[
|
|
\sum_{t=0}^\infty \gamma^t A^{\pi_{OLD}}(s_t, a_t)
|
|
\Biggr]
|
|
\\
|
|
&= \frac{1}{1 - \gamma}
|
|
\mathbb{E}_{s \sim d^{\pi_\theta}, a \sim \pi_\theta} \Bigl[
|
|
A^{\pi_{OLD}}(s, a)
|
|
\Bigr]
|
|
\end{align}</script>
|
|
</p>
|
|
<p>Importance sampling $a$ from $\pi_{\theta_{OLD}}$,</p>
|
|
<p>
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
J(\pi_\theta) - J(\pi_{\theta_{OLD}})
|
|
&= \frac{1}{1 - \gamma}
|
|
\mathbb{E}_{s \sim d^{\pi_\theta}, a \sim \pi_\theta} \Bigl[
|
|
A^{\pi_{OLD}}(s, a)
|
|
\Bigr]
|
|
\\
|
|
&= \frac{1}{1 - \gamma}
|
|
\mathbb{E}_{s \sim d^{\pi_\theta}, a \sim \pi_{\theta_{OLD}}} \Biggl[
|
|
\frac{\pi_\theta(a|s)}{\pi_{\theta_{OLD}}(a|s)} A^{\pi_{OLD}}(s, a)
|
|
\Biggr]
|
|
\end{align}</script>
|
|
</p>
|
|
<p>Then we assume $d^\pi_\theta(s)$ and $d^\pi_{\theta_{OLD}}(s)$ are similar.
|
|
The error we introduce to $J(\pi_\theta) - J(\pi_{\theta_{OLD}})$
|
|
by this assumption is bound by the KL divergence between
|
|
$\pi_\theta$ and $\pi_{\theta_{OLD}}$.
|
|
<a href="https://arxiv.org/abs/1705.10528">Constrained Policy Optimization</a>
|
|
shows the proof of this. I haven’t read it.</p>
|
|
<p>
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
J(\pi_\theta) - J(\pi_{\theta_{OLD}})
|
|
&= \frac{1}{1 - \gamma}
|
|
\mathop{\mathbb{E}}_{s \sim d^{\pi_\theta} \atop a \sim \pi_{\theta_{OLD}}} \Biggl[
|
|
\frac{\pi_\theta(a|s)}{\pi_{\theta_{OLD}}(a|s)} A^{\pi_{OLD}}(s, a)
|
|
\Biggr]
|
|
\\
|
|
&\approx \frac{1}{1 - \gamma}
|
|
\mathop{\mathbb{E}}_{\color{orange}{s \sim d^{\pi_{\theta_{OLD}}}}
|
|
\atop a \sim \pi_{\theta_{OLD}}} \Biggl[
|
|
\frac{\pi_\theta(a|s)}{\pi_{\theta_{OLD}}(a|s)} A^{\pi_{OLD}}(s, a)
|
|
\Biggr]
|
|
\\
|
|
&= \frac{1}{1 - \gamma} \mathcal{L}^{CPI}
|
|
\end{align}</script>
|
|
</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">32</span><span class="k">class</span> <span class="nc">ClippedPPOLoss</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-2'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-2'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">133</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
|
<span class="lineno">134</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-3'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-3'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">136</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">log_pi</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">sampled_log_pi</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span>
|
|
<span class="lineno">137</span> <span class="n">advantage</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">clip</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">:</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-4'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-4'>#</a>
|
|
</div>
|
|
<p>ratio $r_t(\theta) = \frac{\pi_\theta (a_t|s_t)}{\pi_{\theta_{OLD}} (a_t|s_t)}$;
|
|
<em>this is different from rewards</em> $r_t$.</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">140</span> <span class="n">ratio</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">log_pi</span> <span class="o">-</span> <span class="n">sampled_log_pi</span><span class="p">)</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-5'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-5'>#</a>
|
|
</div>
|
|
<h3>Cliping the policy ratio</h3>
|
|
<p>
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
\mathcal{L}^{CLIP}(\theta) =
|
|
\mathbb{E}_{a_t, s_t \sim \pi_{\theta{OLD}}} \biggl[
|
|
min \Bigl(r_t(\theta) \bar{A_t},
|
|
clip \bigl(
|
|
r_t(\theta), 1 - \epsilon, 1 + \epsilon
|
|
\bigr) \bar{A_t}
|
|
\Bigr)
|
|
\biggr]
|
|
\end{align}</script>
|
|
</p>
|
|
<p>The ratio is clipped to be close to 1.
|
|
We take the minimum so that the gradient will only pull
|
|
$\pi_\theta$ towards $\pi_{\theta_{OLD}}$ if the ratio is
|
|
not between $1 - \epsilon$ and $1 + \epsilon$.
|
|
This keeps the KL divergence between $\pi_\theta$
|
|
and $\pi_{\theta_{OLD}}$ constrained.
|
|
Large deviation can cause performance collapse;
|
|
where the policy performance drops and doesn’t recover because
|
|
we are sampling from a bad policy.</p>
|
|
<p>Using the normalized advantage
|
|
$\bar{A_t} = \frac{\hat{A_t} - \mu(\hat{A_t})}{\sigma(\hat{A_t})}$
|
|
introduces a bias to the policy gradient estimator,
|
|
but it reduces variance a lot.</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">169</span> <span class="n">clipped_ratio</span> <span class="o">=</span> <span class="n">ratio</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">clip</span><span class="p">,</span>
|
|
<span class="lineno">170</span> <span class="nb">max</span><span class="o">=</span><span class="mf">1.0</span> <span class="o">+</span> <span class="n">clip</span><span class="p">)</span>
|
|
<span class="lineno">171</span> <span class="n">policy_reward</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">ratio</span> <span class="o">*</span> <span class="n">advantage</span><span class="p">,</span>
|
|
<span class="lineno">172</span> <span class="n">clipped_ratio</span> <span class="o">*</span> <span class="n">advantage</span><span class="p">)</span>
|
|
<span class="lineno">173</span>
|
|
<span class="lineno">174</span> <span class="bp">self</span><span class="o">.</span><span class="n">clip_fraction</span> <span class="o">=</span> <span class="p">(</span><span class="nb">abs</span><span class="p">((</span><span class="n">ratio</span> <span class="o">-</span> <span class="mf">1.0</span><span class="p">))</span> <span class="o">></span> <span class="n">clip</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
|
|
<span class="lineno">175</span>
|
|
<span class="lineno">176</span> <span class="k">return</span> <span class="o">-</span><span class="n">policy_reward</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-6'>
|
|
<div class='docs doc-strings'>
|
|
<div class='section-link'>
|
|
<a href='#section-6'>#</a>
|
|
</div>
|
|
<h2>Clipped Value Function Loss</h2>
|
|
<p>Similarly we clip the value function update also.</p>
|
|
<p>
|
|
<script type="math/tex; mode=display">\begin{align}
|
|
V^{\pi_\theta}_{CLIP}(s_t)
|
|
&= clip\Bigl(V^{\pi_\theta}(s_t) - \hat{V_t}, -\epsilon, +\epsilon\Bigr)
|
|
\\
|
|
\mathcal{L}^{VF}(\theta)
|
|
&= \frac{1}{2} \mathbb{E} \biggl[
|
|
max\Bigl(\bigl(V^{\pi_\theta}(s_t) - R_t\bigr)^2,
|
|
\bigl(V^{\pi_\theta}_{CLIP}(s_t) - R_t\bigr)^2\Bigr)
|
|
\biggr]
|
|
\end{align}</script>
|
|
</p>
|
|
<p>Clipping makes sure the value function $V_\theta$ doesn’t deviate
|
|
significantly from $V_{\theta_{OLD}}$.</p>
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">179</span><span class="k">class</span> <span class="nc">ClippedValueFunctionLoss</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class='section' id='section-7'>
|
|
<div class='docs'>
|
|
<div class='section-link'>
|
|
<a href='#section-7'>#</a>
|
|
</div>
|
|
|
|
</div>
|
|
<div class='code'>
|
|
<div class="highlight"><pre><span class="lineno">200</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">sampled_value</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">sampled_return</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">clip</span><span class="p">:</span> <span class="nb">float</span><span class="p">):</span>
|
|
<span class="lineno">201</span> <span class="n">clipped_value</span> <span class="o">=</span> <span class="n">sampled_value</span> <span class="o">+</span> <span class="p">(</span><span class="n">value</span> <span class="o">-</span> <span class="n">sampled_value</span><span class="p">)</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="nb">min</span><span class="o">=-</span><span class="n">clip</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="n">clip</span><span class="p">)</span>
|
|
<span class="lineno">202</span> <span class="n">vf_loss</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">((</span><span class="n">value</span> <span class="o">-</span> <span class="n">sampled_return</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">,</span> <span class="p">(</span><span class="n">clipped_value</span> <span class="o">-</span> <span class="n">sampled_return</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
|
|
<span class="lineno">203</span> <span class="k">return</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="n">vf_loss</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span></pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
|
|
</script>
|
|
<!-- MathJax configuration -->
|
|
<script type="text/x-mathjax-config">
|
|
MathJax.Hub.Config({
|
|
tex2jax: {
|
|
inlineMath: [ ['$','$'] ],
|
|
displayMath: [ ['$$','$$'] ],
|
|
processEscapes: true,
|
|
processEnvironments: true
|
|
},
|
|
// Center justify equations in code and markdown cells. Elsewhere
|
|
// we use CSS to left justify single line equations in code cells.
|
|
displayAlign: 'center',
|
|
"HTML-CSS": { fonts: ["TeX"] }
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</script>
|
|
</body>
|
|
</html> |