mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 17:41:37 +08:00
♻️ adam+ optimizers
This commit is contained in:
@ -6,7 +6,7 @@ from torch.optim.optimizer import Optimizer
|
||||
|
||||
|
||||
class GenericAdaptiveOptimizer(Optimizer):
|
||||
def __init__(self, params, defaults, lr: float, betas: Tuple[float, float], eps: float, ):
|
||||
def __init__(self, params, defaults, lr: float, betas: Tuple[float, float], eps: float):
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
|
@ -1,14 +1,17 @@
|
||||
"""
|
||||
This is forked from AdaBelief official implementation
|
||||
This is based from AdaBelief official implementation
|
||||
https://github.com/juntang-zhuang/Adabelief-Optimizer
|
||||
"""
|
||||
import math
|
||||
from typing import Dict, Any
|
||||
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer
|
||||
from torch import nn
|
||||
|
||||
from labml_nn.optimizers import WeightDecay
|
||||
from labml_nn.optimizers.radam import RAdam
|
||||
|
||||
|
||||
class AdaBelief(Optimizer):
|
||||
class AdaBelief(RAdam):
|
||||
r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
@ -39,125 +42,50 @@ class AdaBelief(Optimizer):
|
||||
"""
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
|
||||
weight_decay=0, amsgrad=False, weight_decouple=True, fixed_decay=False, rectify=True,
|
||||
degenerated_to_sgd=True):
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
if not 0.0 <= weight_decay:
|
||||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||
weight_decay: WeightDecay = WeightDecay(), amsgrad=False,
|
||||
degenerated_to_sgd=True,
|
||||
rectify=True, defaults=None):
|
||||
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay, amsgrad=amsgrad)
|
||||
super().__init__(params, defaults)
|
||||
|
||||
self.degenerated_to_sgd = degenerated_to_sgd
|
||||
self.weight_decouple = weight_decouple
|
||||
defaults = {} if defaults is None else defaults
|
||||
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, degenerated_to_sgd, defaults)
|
||||
self.rectify = rectify
|
||||
self.fixed_decay = fixed_decay
|
||||
|
||||
def __setstate__(self, state):
|
||||
super().__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault('amsgrad', False)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('AdaBelief does not support sparse gradients,'
|
||||
' please consider SparseAdam instead')
|
||||
|
||||
state = self.state[p]
|
||||
# Lazy state initialization
|
||||
if len(state) == 0:
|
||||
def init_state(self, state: Dict[str, any], group: Dict[str, any], p: nn.Parameter):
|
||||
state['step'] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_var'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
if group['amsgrad']:
|
||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||
state['max_exp_avg_var'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
def get_mv(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
# get current state variable
|
||||
exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var']
|
||||
|
||||
state['step'] += 1
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
m, v = state['exp_avg'], state['exp_avg_var']
|
||||
|
||||
# Update first and second moment running average
|
||||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
grad_residual = grad - exp_avg
|
||||
exp_avg_var.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2)
|
||||
m.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
grad_residual = grad - m
|
||||
v.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2)
|
||||
|
||||
if group['amsgrad']:
|
||||
max_exp_avg_var = state['max_exp_avg_var']
|
||||
# Maintains the maximum of all 2nd moment running avg. till now
|
||||
torch.max(max_exp_avg_var, exp_avg_var, out=max_exp_avg_var)
|
||||
v_max = state['max_exp_avg_var']
|
||||
torch.maximum(v_max, v, out=v_max)
|
||||
|
||||
# Use the max. for normalizing running avg. of gradient
|
||||
denom = ((max_exp_avg_var + group['eps']).sqrt_() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
return m, v_max
|
||||
else:
|
||||
# denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
denom = (exp_avg_var.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
return m, v
|
||||
|
||||
# perform weight decay, check if decoupled weight decay
|
||||
if self.weight_decouple:
|
||||
if not self.fixed_decay:
|
||||
p.data.mul_(1.0 - group['lr'] * group['weight_decay'])
|
||||
else:
|
||||
p.data.mul_(1.0 - group['weight_decay'])
|
||||
else:
|
||||
if group['weight_decay'] != 0:
|
||||
grad.add_(p.data, alpha=group['weight_decay'])
|
||||
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
|
||||
self.weight_decay(param, group)
|
||||
m, v = self.get_mv(state, group, grad)
|
||||
state['step'] += 1
|
||||
|
||||
# update
|
||||
if not self.rectify:
|
||||
# Default update
|
||||
step_size = group['lr'] / bias_correction1
|
||||
p.data.addcdiv_(exp_avg, denom, value=-step_size)
|
||||
self.adam_update(state, group, param, m, v)
|
||||
else: # Rectified update, forked from RAdam
|
||||
beta2_t = beta2 ** state['step']
|
||||
N_sma_max = 2 / (1 - beta2) - 1
|
||||
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
||||
|
||||
# more conservative since it's an approximated value
|
||||
if N_sma >= 5:
|
||||
step_size = math.sqrt(
|
||||
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
|
||||
N_sma_max - 2)) / (1 - beta1 ** state['step'])
|
||||
elif self.degenerated_to_sgd:
|
||||
step_size = 1.0 / (1 - beta1 ** state['step'])
|
||||
else:
|
||||
step_size = -1
|
||||
|
||||
if N_sma >= 5:
|
||||
denom = exp_avg_var.sqrt().add_(group['eps'])
|
||||
p.data.addcdiv_(exp_avg, denom, value=-step_size * group['lr'])
|
||||
elif step_size > 0:
|
||||
p.data.add_(exp_avg, alpha=-step_size * group['lr'])
|
||||
|
||||
return loss
|
||||
self.r_adam_update(state, group, param, m, v)
|
||||
|
@ -1,5 +1,5 @@
|
||||
import math
|
||||
from typing import Dict
|
||||
from typing import Dict, Any
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -9,10 +9,8 @@ from labml_nn.optimizers import GenericAdaptiveOptimizer, WeightDecay
|
||||
|
||||
class Adam(GenericAdaptiveOptimizer):
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
|
||||
amsgrad=False,
|
||||
weight_decay: WeightDecay = WeightDecay()):
|
||||
defaults = dict(amsgrad=amsgrad,
|
||||
buffer=[[None, None, None] for _ in range(10)])
|
||||
weight_decay: WeightDecay = WeightDecay(), defaults=None):
|
||||
defaults = {} if defaults is None else defaults
|
||||
defaults.update(weight_decay.defaults())
|
||||
super().__init__(params, defaults, lr, betas, eps)
|
||||
|
||||
@ -25,31 +23,37 @@ class Adam(GenericAdaptiveOptimizer):
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
if group['amsgrad']:
|
||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
|
||||
self.weight_decay(param, group)
|
||||
|
||||
def get_mv(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
# get current state variable
|
||||
m, v = state['exp_avg'], state['exp_avg_sq']
|
||||
|
||||
state['step'] += 1
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
|
||||
# Update first and second moment running average
|
||||
m.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
|
||||
if group['amsgrad']:
|
||||
v_max = state['max_exp_avg_sq']
|
||||
torch.maximum(v_max, v, out=v_max)
|
||||
denominator = (v_max.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
else:
|
||||
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
return m, v
|
||||
|
||||
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
|
||||
return group['lr']
|
||||
|
||||
def adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
|
||||
m: torch.Tensor, v: torch.Tensor):
|
||||
beta1, beta2 = group['betas']
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
|
||||
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
step_size = self.get_lr(state, group) / bias_correction1
|
||||
param.data.addcdiv_(m, denominator, value=-step_size)
|
||||
|
||||
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
|
||||
self.weight_decay(param, group)
|
||||
|
||||
m, v = self.get_mv(state, group, grad)
|
||||
|
||||
state['step'] += 1
|
||||
|
||||
self.adam_update(state, group, param, m, v)
|
||||
|
||||
param.data.addcdiv_(m, denominator, value=-group['lr'] / bias_correction1)
|
||||
|
18
labml_nn/optimizers/adam_warmup.py
Normal file
18
labml_nn/optimizers/adam_warmup.py
Normal file
@ -0,0 +1,18 @@
|
||||
from typing import Dict
|
||||
|
||||
from labml_nn.optimizers import WeightDecay
|
||||
from labml_nn.optimizers.amsgrad import AMSGrad
|
||||
|
||||
|
||||
class AdamWarmup(AMSGrad):
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
|
||||
weight_decay: WeightDecay = WeightDecay(), amsgrad=False, warmup=0, defaults=None):
|
||||
defaults = {} if defaults is None else defaults
|
||||
defaults.update(dict(warmup=warmup))
|
||||
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, defaults)
|
||||
|
||||
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
|
||||
if group['warmup'] > state['step']:
|
||||
return 1e-8 + state['step'] * group['lr'] / group['warmup']
|
||||
else:
|
||||
return group['lr']
|
32
labml_nn/optimizers/amsgrad.py
Normal file
32
labml_nn/optimizers/amsgrad.py
Normal file
@ -0,0 +1,32 @@
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from labml_nn.optimizers import WeightDecay
|
||||
from labml_nn.optimizers.adam import Adam
|
||||
|
||||
|
||||
class AMSGrad(Adam):
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
|
||||
weight_decay: WeightDecay = WeightDecay(), amsgrad=True, defaults=None):
|
||||
defaults = {} if defaults is None else defaults
|
||||
defaults.update(dict(amsgrad=amsgrad))
|
||||
|
||||
super().__init__(params, lr, betas, eps, weight_decay, defaults)
|
||||
|
||||
def init_state(self, state: Dict[str, any], group: Dict[str, any], p: nn.Parameter):
|
||||
super().init_state(state, group, p)
|
||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||
if group['amsgrad']:
|
||||
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
def get_mv(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor):
|
||||
m, v = super().get_mv(state, group, grad)
|
||||
if group['amsgrad']:
|
||||
v_max = state['max_exp_avg_sq']
|
||||
torch.maximum(v_max, v, out=v_max)
|
||||
|
||||
return m, v_max
|
||||
else:
|
||||
return m, v
|
@ -82,11 +82,23 @@ def model(c: Configs):
|
||||
|
||||
|
||||
@option(OptimizerConfigs.optimizer, 'AdaBelief')
|
||||
def ada_belief(c: OptimizerConfigs):
|
||||
from labml_nn.optimizers.ada_belief_buffer import AdaBelief
|
||||
def _ada_belief(c: OptimizerConfigs):
|
||||
from labml_nn.optimizers.ada_belief import AdaBelief
|
||||
return AdaBelief(c.parameters, lr=c.learning_rate, betas=c.betas, eps=c.eps)
|
||||
|
||||
|
||||
@option(OptimizerConfigs.optimizer, 'Adam')
|
||||
def _adam(c: OptimizerConfigs):
|
||||
from labml_nn.optimizers.adam import Adam
|
||||
return Adam(c.parameters, lr=c.learning_rate, betas=c.betas, eps=c.eps)
|
||||
|
||||
|
||||
@option(OptimizerConfigs.optimizer, 'AdamWarmup')
|
||||
def _adam_warmup(c: OptimizerConfigs):
|
||||
from labml_nn.optimizers.adam_warmup import AdamWarmup
|
||||
return AdamWarmup(c.parameters, lr=c.learning_rate, betas=c.betas, eps=c.eps)
|
||||
|
||||
|
||||
@option(Configs.optimizer)
|
||||
def _optimizer(c: Configs):
|
||||
opt_conf = OptimizerConfigs()
|
@ -1,159 +1,47 @@
|
||||
"""
|
||||
Forked from https://github.com/LiyuanLucasLiu/RAdam
|
||||
Based on https://github.com/LiyuanLucasLiu/RAdam
|
||||
"""
|
||||
|
||||
import math
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer
|
||||
|
||||
from labml_nn.optimizers import WeightDecay
|
||||
from labml_nn.optimizers.amsgrad import AMSGrad
|
||||
|
||||
|
||||
class RAdam(Optimizer):
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
|
||||
class RAdam(AMSGrad):
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
||||
weight_decay: WeightDecay = WeightDecay(), amsgrad=False,
|
||||
degenerated_to_sgd=True, defaults=None):
|
||||
self.degenerated_to_sgd = degenerated_to_sgd
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
|
||||
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, defaults)
|
||||
|
||||
super().__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super().__setstate__(state)
|
||||
|
||||
def step(self, closure=None):
|
||||
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data.float()
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('RAdam does not support sparse gradients')
|
||||
|
||||
p_data_fp32 = p.data.float()
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
||||
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
||||
else:
|
||||
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
||||
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||||
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||||
|
||||
state['step'] += 1
|
||||
beta2_t = beta2 ** state['step']
|
||||
N_sma_max = 2 / (1 - beta2) - 1
|
||||
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
||||
|
||||
# more conservative since it's an approximated value
|
||||
if N_sma >= 5:
|
||||
if group['weight_decay'] != 0:
|
||||
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
||||
step_size = group['lr'] * math.sqrt(
|
||||
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
|
||||
N_sma_max - 2)) / (1 - beta1 ** state['step'])
|
||||
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||||
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
|
||||
p.data.copy_(p_data_fp32)
|
||||
elif self.degenerated_to_sgd:
|
||||
if group['weight_decay'] != 0:
|
||||
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
|
||||
step_size = group['lr'] / (1 - beta1 ** state['step'])
|
||||
p_data_fp32.add_(-step_size, exp_avg)
|
||||
p.data.copy_(p_data_fp32)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class AdamW(Optimizer):
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup=0):
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay, warmup=warmup)
|
||||
super(AdamW, self).__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(AdamW, self).__setstate__(state)
|
||||
|
||||
def step(self, closure=None):
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data.float()
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
|
||||
|
||||
p_data_fp32 = p.data.float()
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
state['exp_avg'] = torch.zeros_like(p_data_fp32)
|
||||
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
|
||||
else:
|
||||
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
|
||||
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
beta1, beta2 = group['betas']
|
||||
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
|
||||
self.weight_decay(param, group)
|
||||
|
||||
m, v = self.get_mv(state, group, grad)
|
||||
state['step'] += 1
|
||||
|
||||
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
||||
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
||||
self.r_adam_update(state, group, param, m, v)
|
||||
|
||||
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||||
def r_adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
|
||||
m: torch.Tensor, v: torch.Tensor):
|
||||
beta1, beta2 = group['betas']
|
||||
bias_correction1 = 1 - beta1 ** state['step']
|
||||
bias_correction2 = 1 - beta2 ** state['step']
|
||||
|
||||
if group['warmup'] > state['step']:
|
||||
scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup']
|
||||
else:
|
||||
scheduled_lr = group['lr']
|
||||
beta2_t = beta2 ** state['step']
|
||||
rho_inf = 2 / (1 - beta2) - 1
|
||||
rho = rho_inf - 2 * state['step'] * beta2_t / (1 - beta2_t)
|
||||
|
||||
step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1
|
||||
|
||||
if group['weight_decay'] != 0:
|
||||
p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32)
|
||||
|
||||
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
|
||||
|
||||
p.data.copy_(p_data_fp32)
|
||||
|
||||
return loss
|
||||
# more conservative since it's an approximated value
|
||||
if rho >= 5:
|
||||
r2 = (rho - 4) / (rho_inf - 4) * (rho - 2) / rho * rho_inf / (rho_inf - 2)
|
||||
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
|
||||
step_size = self.get_lr(state, group) * math.sqrt(r2) / bias_correction1
|
||||
param.data.addcdiv_(m, denominator, value=-step_size)
|
||||
elif self.degenerated_to_sgd:
|
||||
step_size = self.get_lr(state, group) / bias_correction1
|
||||
param.data.add_(m, alpha=-step_size)
|
||||
|
Reference in New Issue
Block a user