Files
Varuna Jayasiri 08f9530a03 ♻️ adam+ optimizers
2020-12-03 13:22:48 +05:30

60 lines
2.2 KiB
Python

import math
from typing import Dict, Any
import torch
from torch import nn
from labml_nn.optimizers import GenericAdaptiveOptimizer, WeightDecay
class Adam(GenericAdaptiveOptimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay: WeightDecay = WeightDecay(), defaults=None):
defaults = {} if defaults is None else defaults
defaults.update(weight_decay.defaults())
super().__init__(params, defaults, lr, betas, eps)
self.weight_decay = weight_decay
def init_state(self, state: Dict[str, any], group: Dict[str, any], p: nn.Parameter):
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
def get_mv(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
beta1, beta2 = group['betas']
# get current state variable
m, v = state['exp_avg'], state['exp_avg_sq']
# Update first and second moment running average
m.mul_(beta1).add_(grad, alpha=1 - beta1)
v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
return m, v
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
return group['lr']
def adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
m: torch.Tensor, v: torch.Tensor):
beta1, beta2 = group['betas']
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
step_size = self.get_lr(state, group) / bias_correction1
param.data.addcdiv_(m, denominator, value=-step_size)
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
self.weight_decay(param, group)
m, v = self.get_mv(state, group, grad)
state['step'] += 1
self.adam_update(state, group, param, m, v)