♻️ adam+ optimizers

This commit is contained in:
Varuna Jayasiri
2020-12-03 13:22:48 +05:30
parent 739913a910
commit 08f9530a03
7 changed files with 168 additions and 286 deletions

View File

@ -6,7 +6,7 @@ from torch.optim.optimizer import Optimizer
class GenericAdaptiveOptimizer(Optimizer):
def __init__(self, params, defaults, lr: float, betas: Tuple[float, float], eps: float, ):
def __init__(self, params, defaults, lr: float, betas: Tuple[float, float], eps: float):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:

View File

@ -1,14 +1,17 @@
"""
This is forked from AdaBelief official implementation
This is based from AdaBelief official implementation
https://github.com/juntang-zhuang/Adabelief-Optimizer
"""
import math
from typing import Dict, Any
import torch
from torch.optim.optimizer import Optimizer
from torch import nn
from labml_nn.optimizers import WeightDecay
from labml_nn.optimizers.radam import RAdam
class AdaBelief(Optimizer):
class AdaBelief(RAdam):
r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
@ -39,125 +42,50 @@ class AdaBelief(Optimizer):
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay=0, amsgrad=False, weight_decouple=True, fixed_decay=False, rectify=True,
degenerated_to_sgd=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
weight_decay: WeightDecay = WeightDecay(), amsgrad=False,
degenerated_to_sgd=True,
rectify=True, defaults=None):
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super().__init__(params, defaults)
self.degenerated_to_sgd = degenerated_to_sgd
self.weight_decouple = weight_decouple
defaults = {} if defaults is None else defaults
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, degenerated_to_sgd, defaults)
self.rectify = rectify
self.fixed_decay = fixed_decay
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('AdaBelief does not support sparse gradients,'
' please consider SparseAdam instead')
state = self.state[p]
# Lazy state initialization
if len(state) == 0:
def init_state(self, state: Dict[str, any], group: Dict[str, any], p: nn.Parameter):
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_var'] = torch.zeros_like(p, memory_format=torch.preserve_format)
if group['amsgrad']:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_var'] = torch.zeros_like(p, memory_format=torch.preserve_format)
def get_mv(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
beta1, beta2 = group['betas']
# get current state variable
exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
m, v = state['exp_avg'], state['exp_avg_var']
# Update first and second moment running average
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
grad_residual = grad - exp_avg
exp_avg_var.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2)
m.mul_(beta1).add_(grad, alpha=1 - beta1)
grad_residual = grad - m
v.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2)
if group['amsgrad']:
max_exp_avg_var = state['max_exp_avg_var']
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_var, exp_avg_var, out=max_exp_avg_var)
v_max = state['max_exp_avg_var']
torch.maximum(v_max, v, out=v_max)
# Use the max. for normalizing running avg. of gradient
denom = ((max_exp_avg_var + group['eps']).sqrt_() / math.sqrt(bias_correction2)).add_(group['eps'])
return m, v_max
else:
# denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
denom = (exp_avg_var.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
return m, v
# perform weight decay, check if decoupled weight decay
if self.weight_decouple:
if not self.fixed_decay:
p.data.mul_(1.0 - group['lr'] * group['weight_decay'])
else:
p.data.mul_(1.0 - group['weight_decay'])
else:
if group['weight_decay'] != 0:
grad.add_(p.data, alpha=group['weight_decay'])
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
self.weight_decay(param, group)
m, v = self.get_mv(state, group, grad)
state['step'] += 1
# update
if not self.rectify:
# Default update
step_size = group['lr'] / bias_correction1
p.data.addcdiv_(exp_avg, denom, value=-step_size)
self.adam_update(state, group, param, m, v)
else: # Rectified update, forked from RAdam
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
# more conservative since it's an approximated value
if N_sma >= 5:
step_size = math.sqrt(
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
N_sma_max - 2)) / (1 - beta1 ** state['step'])
elif self.degenerated_to_sgd:
step_size = 1.0 / (1 - beta1 ** state['step'])
else:
step_size = -1
if N_sma >= 5:
denom = exp_avg_var.sqrt().add_(group['eps'])
p.data.addcdiv_(exp_avg, denom, value=-step_size * group['lr'])
elif step_size > 0:
p.data.add_(exp_avg, alpha=-step_size * group['lr'])
return loss
self.r_adam_update(state, group, param, m, v)

View File

@ -1,5 +1,5 @@
import math
from typing import Dict
from typing import Dict, Any
import torch
from torch import nn
@ -9,10 +9,8 @@ from labml_nn.optimizers import GenericAdaptiveOptimizer, WeightDecay
class Adam(GenericAdaptiveOptimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
amsgrad=False,
weight_decay: WeightDecay = WeightDecay()):
defaults = dict(amsgrad=amsgrad,
buffer=[[None, None, None] for _ in range(10)])
weight_decay: WeightDecay = WeightDecay(), defaults=None):
defaults = {} if defaults is None else defaults
defaults.update(weight_decay.defaults())
super().__init__(params, defaults, lr, betas, eps)
@ -25,31 +23,37 @@ class Adam(GenericAdaptiveOptimizer):
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
if group['amsgrad']:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
self.weight_decay(param, group)
def get_mv(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
beta1, beta2 = group['betas']
# get current state variable
m, v = state['exp_avg'], state['exp_avg_sq']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
# Update first and second moment running average
m.mul_(beta1).add_(grad, alpha=1 - beta1)
v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
if group['amsgrad']:
v_max = state['max_exp_avg_sq']
torch.maximum(v_max, v, out=v_max)
denominator = (v_max.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
else:
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
return m, v
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
return group['lr']
def adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
m: torch.Tensor, v: torch.Tensor):
beta1, beta2 = group['betas']
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
step_size = self.get_lr(state, group) / bias_correction1
param.data.addcdiv_(m, denominator, value=-step_size)
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
self.weight_decay(param, group)
m, v = self.get_mv(state, group, grad)
state['step'] += 1
self.adam_update(state, group, param, m, v)
param.data.addcdiv_(m, denominator, value=-group['lr'] / bias_correction1)

View File

@ -0,0 +1,18 @@
from typing import Dict
from labml_nn.optimizers import WeightDecay
from labml_nn.optimizers.amsgrad import AMSGrad
class AdamWarmup(AMSGrad):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay: WeightDecay = WeightDecay(), amsgrad=False, warmup=0, defaults=None):
defaults = {} if defaults is None else defaults
defaults.update(dict(warmup=warmup))
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, defaults)
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
if group['warmup'] > state['step']:
return 1e-8 + state['step'] * group['lr'] / group['warmup']
else:
return group['lr']

View File

@ -0,0 +1,32 @@
from typing import Dict
import torch
from torch import nn
from labml_nn.optimizers import WeightDecay
from labml_nn.optimizers.adam import Adam
class AMSGrad(Adam):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay: WeightDecay = WeightDecay(), amsgrad=True, defaults=None):
defaults = {} if defaults is None else defaults
defaults.update(dict(amsgrad=amsgrad))
super().__init__(params, lr, betas, eps, weight_decay, defaults)
def init_state(self, state: Dict[str, any], group: Dict[str, any], p: nn.Parameter):
super().init_state(state, group, p)
# Maintains max of all exp. moving avg. of sq. grad. values
if group['amsgrad']:
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
def get_mv(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor):
m, v = super().get_mv(state, group, grad)
if group['amsgrad']:
v_max = state['max_exp_avg_sq']
torch.maximum(v_max, v, out=v_max)
return m, v_max
else:
return m, v

View File

@ -82,11 +82,23 @@ def model(c: Configs):
@option(OptimizerConfigs.optimizer, 'AdaBelief')
def ada_belief(c: OptimizerConfigs):
from labml_nn.optimizers.ada_belief_buffer import AdaBelief
def _ada_belief(c: OptimizerConfigs):
from labml_nn.optimizers.ada_belief import AdaBelief
return AdaBelief(c.parameters, lr=c.learning_rate, betas=c.betas, eps=c.eps)
@option(OptimizerConfigs.optimizer, 'Adam')
def _adam(c: OptimizerConfigs):
from labml_nn.optimizers.adam import Adam
return Adam(c.parameters, lr=c.learning_rate, betas=c.betas, eps=c.eps)
@option(OptimizerConfigs.optimizer, 'AdamWarmup')
def _adam_warmup(c: OptimizerConfigs):
from labml_nn.optimizers.adam_warmup import AdamWarmup
return AdamWarmup(c.parameters, lr=c.learning_rate, betas=c.betas, eps=c.eps)
@option(Configs.optimizer)
def _optimizer(c: Configs):
opt_conf = OptimizerConfigs()

View File

@ -1,159 +1,47 @@
"""
Forked from https://github.com/LiyuanLucasLiu/RAdam
Based on https://github.com/LiyuanLucasLiu/RAdam
"""
import math
from typing import Dict
import torch
from torch.optim.optimizer import Optimizer
from labml_nn.optimizers import WeightDecay
from labml_nn.optimizers.amsgrad import AMSGrad
class RAdam(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
class RAdam(AMSGrad):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay: WeightDecay = WeightDecay(), amsgrad=False,
degenerated_to_sgd=True, defaults=None):
self.degenerated_to_sgd = degenerated_to_sgd
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, defaults)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError('RAdam does not support sparse gradients')
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state['step'] += 1
beta2_t = beta2 ** state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
# more conservative since it's an approximated value
if N_sma >= 5:
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
step_size = group['lr'] * math.sqrt(
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (
N_sma_max - 2)) / (1 - beta1 ** state['step'])
denom = exp_avg_sq.sqrt().add_(group['eps'])
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
p.data.copy_(p_data_fp32)
elif self.degenerated_to_sgd:
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
step_size = group['lr'] / (1 - beta1 ** state['step'])
p_data_fp32.add_(-step_size, exp_avg)
p.data.copy_(p_data_fp32)
return loss
class AdamW(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup=0):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, warmup=warmup)
super(AdamW, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdamW, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
self.weight_decay(param, group)
m, v = self.get_mv(state, group, grad)
state['step'] += 1
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
self.r_adam_update(state, group, param, m, v)
denom = exp_avg_sq.sqrt().add_(group['eps'])
def r_adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
m: torch.Tensor, v: torch.Tensor):
beta1, beta2 = group['betas']
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
if group['warmup'] > state['step']:
scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup']
else:
scheduled_lr = group['lr']
beta2_t = beta2 ** state['step']
rho_inf = 2 / (1 - beta2) - 1
rho = rho_inf - 2 * state['step'] * beta2_t / (1 - beta2_t)
step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32)
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
p.data.copy_(p_data_fp32)
return loss
# more conservative since it's an approximated value
if rho >= 5:
r2 = (rho - 4) / (rho_inf - 4) * (rho - 2) / rho * rho_inf / (rho_inf - 2)
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
step_size = self.get_lr(state, group) * math.sqrt(r2) / bias_correction1
param.data.addcdiv_(m, denominator, value=-step_size)
elif self.degenerated_to_sgd:
step_size = self.get_lr(state, group) / bias_correction1
param.data.add_(m, alpha=-step_size)