♻️ adam+ optimizers

This commit is contained in:
Varuna Jayasiri
2020-12-03 13:22:48 +05:30
parent 739913a910
commit 08f9530a03
7 changed files with 168 additions and 286 deletions

View File

@ -1,5 +1,5 @@
import math
from typing import Dict
from typing import Dict, Any
import torch
from torch import nn
@ -9,10 +9,8 @@ from labml_nn.optimizers import GenericAdaptiveOptimizer, WeightDecay
class Adam(GenericAdaptiveOptimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
amsgrad=False,
weight_decay: WeightDecay = WeightDecay()):
defaults = dict(amsgrad=amsgrad,
buffer=[[None, None, None] for _ in range(10)])
weight_decay: WeightDecay = WeightDecay(), defaults=None):
defaults = {} if defaults is None else defaults
defaults.update(weight_decay.defaults())
super().__init__(params, defaults, lr, betas, eps)
@ -25,31 +23,37 @@ class Adam(GenericAdaptiveOptimizer):
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
if group['amsgrad']:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
self.weight_decay(param, group)
def get_mv(self, state: Dict[str, Any], group: Dict[str, Any], grad: torch.Tensor):
beta1, beta2 = group['betas']
# get current state variable
m, v = state['exp_avg'], state['exp_avg_sq']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
# Update first and second moment running average
m.mul_(beta1).add_(grad, alpha=1 - beta1)
v.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
if group['amsgrad']:
v_max = state['max_exp_avg_sq']
torch.maximum(v_max, v, out=v_max)
denominator = (v_max.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
else:
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
return m, v
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
return group['lr']
def adam_update(self, state: Dict[str, any], group: Dict[str, any], param: torch.nn.Parameter,
m: torch.Tensor, v: torch.Tensor):
beta1, beta2 = group['betas']
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
step_size = self.get_lr(state, group) / bias_correction1
param.data.addcdiv_(m, denominator, value=-step_size)
def calculate(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
self.weight_decay(param, group)
m, v = self.get_mv(state, group, grad)
state['step'] += 1
self.adam_update(state, group, param, m, v)
param.data.addcdiv_(m, denominator, value=-group['lr'] / bias_correction1)