Alan Modra dcea6a95d7 qsort issues
qsort isn't guaranteed to be a stable sort, that is, elements
comparing equal according to the comparison function may be reordered
relative to their original ordering.  Of course sometimes you may not
care, but even in those cases it is good to force some ordering
(ie. not have the comparison function return 0) so that linker output
is reproducible over different libc qsort implementations.

One way to make qsort stable (which the glibc manual incorrectly says
is the only way) is to augment the elements being sorted with a
monotonic counter of some kind, and use that counter as the final
arbiter of ordering in the comparison function.

Another way is to set up an array of pointers into the array of
elements, first pointer to first element, second pointer to second
element and so so, and sort the pointer array rather than the element
array.  Final arbiter in the comparison function then is the pointer
difference.  This works well with, for example, the symbol pointers
returned by _bfd_elf_canonicalize_symtab which point into a symbol
array.

This patch fixes a few places where sorting by symbol pointers is
appropriate, and adds comments where qsort stability is a non-issue.

	* elf-strtab.c (strrevcmp): Comment.
	* merge.c (strrevcmp): Likewise.
	* elf64-ppc.c (compare_symbols): Correct final pointer comparison.
	Comment on why comparing pointers ensures a stable sort.
	* elflink.c (struct elf_symbol): Add void* to union.
	(elf_sort_elf_symbol): Ensure a stable sort with pointer comparison.
	(elf_sym_name_compare): Likewise.
	(bfd_elf_match_symbols_in_sections): Style fix.
	(elf_link_sort_cmp1): Comment.
2019-10-14 16:47:12 +10:30
2019-10-14 16:47:12 +10:30
2019-09-19 09:40:13 +09:30
2019-10-03 17:04:56 +01:00
2018-10-31 17:16:41 +00:00
2019-06-14 12:40:02 -06:00
2019-10-07 02:26:27 +00:00
2019-10-07 02:26:27 +00:00

		   README for GNU development tools

This directory contains various GNU compilers, assemblers, linkers, 
debuggers, etc., plus their support routines, definitions, and documentation.

If you are receiving this as part of a GDB release, see the file gdb/README.
If with a binutils release, see binutils/README;  if with a libg++ release,
see libg++/README, etc.  That'll give you info about this
package -- supported targets, how to use it, how to report bugs, etc.

It is now possible to automatically configure and build a variety of
tools with one command.  To build all of the tools contained herein,
run the ``configure'' script here, e.g.:

	./configure 
	make

To install them (by default in /usr/local/bin, /usr/local/lib, etc),
then do:
	make install

(If the configure script can't determine your type of computer, give it
the name as an argument, for instance ``./configure sun4''.  You can
use the script ``config.sub'' to test whether a name is recognized; if
it is, config.sub translates it to a triplet specifying CPU, vendor,
and OS.)

If you have more than one compiler on your system, it is often best to
explicitly set CC in the environment before running configure, and to
also set CC when running make.  For example (assuming sh/bash/ksh):

	CC=gcc ./configure
	make

A similar example using csh:

	setenv CC gcc
	./configure
	make

Much of the code and documentation enclosed is copyright by
the Free Software Foundation, Inc.  See the file COPYING or
COPYING.LIB in the various directories, for a description of the
GNU General Public License terms under which you can copy the files.

REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info
on where and how to report problems.
Description
Unofficial mirror of sourceware binutils-gdb repository. Updated daily.
Readme 780 MiB
Languages
C 51.8%
Makefile 22.4%
Assembly 12.3%
C++ 6%
Roff 1.4%
Other 5.4%