mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-19 17:18:24 +08:00

This commit changes the format of 'disassemble /r' to match GNU objdump. Specifically, GDB will now display the instruction bytes in as 'objdump --wide --disassemble' does. Here is an example for RISC-V before this patch: (gdb) disassemble /r 0x0001018e,0x0001019e Dump of assembler code from 0x1018e to 0x1019e: 0x0001018e <call_me+66>: 03 26 84 fe lw a2,-24(s0) 0x00010192 <call_me+70>: 83 25 c4 fe lw a1,-20(s0) 0x00010196 <call_me+74>: 61 65 lui a0,0x18 0x00010198 <call_me+76>: 13 05 85 6a addi a0,a0,1704 0x0001019c <call_me+80>: f1 22 jal 0x10368 <printf> End of assembler dump. And here's an example after this patch: (gdb) disassemble /r 0x0001018e,0x0001019e Dump of assembler code from 0x1018e to 0x1019e: 0x0001018e <call_me+66>: fe842603 lw a2,-24(s0) 0x00010192 <call_me+70>: fec42583 lw a1,-20(s0) 0x00010196 <call_me+74>: 6561 lui a0,0x18 0x00010198 <call_me+76>: 6a850513 addi a0,a0,1704 0x0001019c <call_me+80>: 22f1 jal 0x10368 <printf> End of assembler dump. There are two differences here. First, the instruction bytes after the patch are grouped based on the size of the instruction, and are byte-swapped to little-endian order. Second, after the patch, GDB now uses the bytes-per-line hint from libopcodes to add whitespace padding after the opcode bytes, this means that in most cases the instructions are nicely aligned. It is still possible for a very long instruction to intrude into the disassembled text space. The next example is x86-64, before the patch: (gdb) disassemble /r main Dump of assembler code for function main: 0x0000000000401106 <+0>: 55 push %rbp 0x0000000000401107 <+1>: 48 89 e5 mov %rsp,%rbp 0x000000000040110a <+4>: c7 87 d8 00 00 00 01 00 00 00 movl $0x1,0xd8(%rdi) 0x0000000000401114 <+14>: b8 00 00 00 00 mov $0x0,%eax 0x0000000000401119 <+19>: 5d pop %rbp 0x000000000040111a <+20>: c3 ret End of assembler dump. And after the patch: (gdb) disassemble /r main Dump of assembler code for function main: 0x0000000000401106 <+0>: 55 push %rbp 0x0000000000401107 <+1>: 48 89 e5 mov %rsp,%rbp 0x000000000040110a <+4>: c7 87 d8 00 00 00 01 00 00 00 movl $0x1,0xd8(%rdi) 0x0000000000401114 <+14>: b8 00 00 00 00 mov $0x0,%eax 0x0000000000401119 <+19>: 5d pop %rbp 0x000000000040111a <+20>: c3 ret End of assembler dump. Most instructions are aligned, except for the very long instruction. Notice too that for x86-64 libopcodes doesn't request that GDB group the instruction bytes. This matches the behaviour of objdump. In case the user really wants the old behaviour, I have added a new modifier 'disassemble /b', this displays the instruction byte at a time. For x86-64, which never groups instruction bytes, /b and /r are equivalent, but for RISC-V, using /b gets the old layout back (except that the whitespace for alignment is still present). Consider our original RISC-V example, this time using /b: (gdb) disassemble /b 0x0001018e,0x0001019e Dump of assembler code from 0x1018e to 0x1019e: 0x0001018e <call_me+66>: 03 26 84 fe lw a2,-24(s0) 0x00010192 <call_me+70>: 83 25 c4 fe lw a1,-20(s0) 0x00010196 <call_me+74>: 61 65 lui a0,0x18 0x00010198 <call_me+76>: 13 05 85 6a addi a0,a0,1704 0x0001019c <call_me+80>: f1 22 jal 0x10368 <printf> End of assembler dump. Obviously, this patch is a potentially significant change to the behaviour or /r. I could have added /b with the new behaviour and left /r alone. However, personally, I feel the new behaviour is significantly better than the old, hence, I made /r be what I consider the "better" behaviour. The reason I prefer the new behaviour is that, when I use /r, I almost always want to manually decode the instruction for some reason, and having the bytes displayed in "instruction order" rather than memory order, just makes this easier. The 'record instruction-history' command also takes a /r modifier, and has been modified in the same way as disassemble; /r gets the new behaviour, and /b has been added to retain the old behaviour. Finally, the MI command -data-disassemble, is unchanged in behaviour, this command now requests the raw bytes of the instruction, which is equivalent to the /b modifier. This means that the MI output will remain backward compatible.
…
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description
Languages
C
51.8%
Makefile
22.4%
Assembly
12.3%
C++
6%
Roff
1.4%
Other
5.4%