mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-25 04:49:54 +08:00

I noticed that when I single-step into a signal handler with a pending/queued signal, the following single-steps while the program is in the signal handler leave $eflags.TF set. That means subsequent continues will trap after one instruction, resulting in a spurious SIGTRAP being reported to the user. This is a kernel bug; I've reported it to kernel devs (turned out to be a known bug). I'm seeing it on x86_64 Fedora 20 (Linux 3.16.4-200.fc20.x86_64), and I was told it's still not fixed upstream. This commit extends gdb.base/sigstep.exp to cover this use case, xfailed. Here's what the bug looks like: (gdb) start Temporary breakpoint 1, main () at si-handler.c:48 48 setup (); (gdb) next 50 global = 0; /* set break here */ Let's queue a signal, so we can step into the handler: (gdb) handle SIGUSR1 Signal Stop Print Pass to program Description SIGUSR1 Yes Yes Yes User defined signal 1 (gdb) queue-signal SIGUSR1 TF is not set: (gdb) display $eflags 1: $eflags = [ PF ZF IF ] Now step into the handler -- "si" does PTRACE_SINGLESTEP+SIGUSR1: (gdb) si sigusr1_handler (sig=0) at si-handler.c:31 31 { 1: $eflags = [ PF ZF IF ] No TF yet. But another single-step... (gdb) si 0x0000000000400621 31 { 1: $eflags = [ PF ZF TF IF ] ... ends up with TF left set. This results in PTRACE_CONTINUE trapping after each instruction is executed: (gdb) c Continuing. Program received signal SIGTRAP, Trace/breakpoint trap. 0x0000000000400624 in sigusr1_handler (sig=0) at si-handler.c:31 31 { 1: $eflags = [ PF ZF TF IF ] (gdb) c Continuing. Program received signal SIGTRAP, Trace/breakpoint trap. sigusr1_handler (sig=10) at si-handler.c:32 32 global = 0; 1: $eflags = [ PF ZF TF IF ] (gdb) Note that even another PTRACE_SINGLESTEP does not fix it: (gdb) si 33 } 1: $eflags = [ PF ZF TF IF ] (gdb) Eventually, it gets "fixed" by the rt_sigreturn syscall, when returning out of the handler: (gdb) bt #0 sigusr1_handler (sig=10) at si-handler.c:33 #1 <signal handler called> #2 main () at si-handler.c:50 (gdb) set disassemble-next-line on (gdb) si 0x0000000000400632 33 } 0x0000000000400631 <sigusr1_handler+17>: 5d pop %rbp => 0x0000000000400632 <sigusr1_handler+18>: c3 retq 1: $eflags = [ PF ZF TF IF ] (gdb) <signal handler called> => 0x0000003b36a358f0 <__restore_rt+0>: 48 c7 c0 0f 00 00 00 mov $0xf,%rax 1: $eflags = [ PF ZF TF IF ] (gdb) si <signal handler called> => 0x0000003b36a358f7 <__restore_rt+7>: 0f 05 syscall 1: $eflags = [ PF ZF TF IF ] (gdb) main () at si-handler.c:50 50 global = 0; /* set break here */ => 0x000000000040066b <main+9>: c7 05 cb 09 20 00 00 00 00 00 movl $0x0,0x2009cb(%rip) # 0x601040 <global> 1: $eflags = [ PF ZF IF ] (gdb) The bug doesn't happen if we instead PTRACE_CONTINUE into the signal handler -- e.g., set a breakpoint in the handler, queue a signal, and "continue". gdb/testsuite/ 2014-10-28 Pedro Alves <palves@redhat.com> PR gdb/17511 * gdb.base/sigstep.c (handler): Add a few more writes to 'done'. * gdb.base/sigstep.exp (other_handler_location): New global. (advance): Support stepping into the signal handler, and running commands while in the handler. (in_handler_map): New global. (top level): In the advance test, add combinations for getting into the handler with stepping commands, and for running commands in the handler. Add comment descripting the advancei tests.
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description
Languages
C
51.8%
Makefile
22.4%
Assembly
12.3%
C++
6%
Roff
1.4%
Other
5.4%