mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-23 11:39:26 +08:00

Building on the previous commit, this commit extends the register_name selftest to check for duplicate register names. If two registers in the cooked register set (real + pseudo registers) have the same name, then this will show up as duplicate registers in the 'info all-registers' output, but the user will only be able to interact with one copy of the register. In this commit I extend the selftest that I added in the previous commit to check for duplicate register names, I didn't include this functionality in the previous commit because one architecture needed fixing, and I wanted to keep those fixes separate from the fixes in the previous commit. The problematic architecture(s) are powerpc:750 and powerpc:604. In both of these cases the 'dabr' register appears twice, there's a definition of dabr in power-oea.xml which is included into both powerpc-604.xml and powerpc-750.xml. Both of these later two xml files also define the dabr register. I'm hopeful that this change shouldn't break anything, but I don't have the ability to actually test this change, however: On the gdbserver side, neither powerpc-604.xml nor powerpc-750.xml are mentioned in gdbserver/configure.srv, which I think means that gdbserver will never use these descriptions, and, Within GDB the problematic descriptions are held in the variables tdesc_powerpc_604 and tdesc_powerpc_750, which are only mentioned in the variants array in rs6000-tdep.c, this is used when looking up a description based on the architecture. For a native Linux target however, this will not be used as ppc_linux_nat_target::read_description exists, which calls ppc_linux_match_description, which I don't believe can return either of the problematic descriptions. This leaves the other native targets, FreeBSD, AIX, etc. These don't appear to override the ::read_description method, so will potentially return the problematic descriptions, but, in each case I think the ::fetch_registers and ::store_registers methods will ignore the dabr register, which will leave the register as <unavailable>. So, my proposed solution is to just remove the duplicate register from each of powerpc-604.xml and powerpc-750.xml, then regenerate the corresponding C++ source file. With this change made, the selftest now passes for all architectures.
…
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description
Languages
C
51.8%
Makefile
22.4%
Assembly
12.3%
C++
6%
Roff
1.4%
Other
5.4%