mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-06-24 20:28:28 +08:00

PR gdb/29272 Investigating PR29272, it was mentioned a particular test used to work on GDB 10, but it started failing with GDB 11 onwards. I tracked it down to some displaced stepping improvements on commit 187b041e2514827b9d86190ed2471c4c7a352874. In particular, one of the corner cases using copy_insn_closure_by_addr got silently broken. It is hard to spot because it doesn't have any good tests for it, and the situation is quite specific to the Arm target. Essentially, the change from the displaced stepping improvements made it so we could still invoke copy_insn_closure_by_addr correctly to return the pointer to a copy_insn_closure, but it always returned nullptr due to the order of the statements in displaced_step_buffer::prepare. The way it is now, we first write the address of the displaced step buffer to PC and then save the copy_insn_closure pointer. The problem is that writing to PC for the Arm target requires figuring out if the new PC is thumb mode or not. With no copy_insn_closure data, the logic to determine the thumb mode during displaced stepping doesn't work, and gives random results that are difficult to track (SIGILL, SIGSEGV etc). Fix this by reordering the PC write in displaced_step_buffer::prepare and, for safety, add an assertion to displaced_step_buffer::copy_insn_closure_by_addr so GDB stops right when it sees this invalid situation. If this gets broken again in the future, it will be easier to spot. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29272 Approved-By: Simon Marchi <simon.marchi@efficios.com>
…
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description
Languages
C
51.8%
Makefile
22.4%
Assembly
12.3%
C++
6%
Roff
1.4%
Other
5.4%