mirror of
https://github.com/espressif/binutils-gdb.git
synced 2025-05-31 01:45:52 +08:00
* rs6000-tdep.c: Do not include "rs6000-tdep.h".
(rs6000_find_toc_address_hook): Move to rs6000-aix-tdep.c. (SIG_FRAME_PC_OFFSET): Likewise. (SIG_FRAME_LR_OFFSET): Likewise. (SIG_FRAME_FP_OFFSET): Likewise. (rs6000_push_dummy_call): Likewise. (rs6000_return_value): Likewise. (rs6000_convert_from_func_ptr_addr): Likewise. (branch_dest, rs6000_software_single_step): Likewise. (deal_with_atomic_sequence): Rename to ... (ppc_deal_with_atomic_sequence): ... this. Adapt all callers. Do not call branch_dest; inline required parts of that function. (rs6000_skip_trampoline_code): Replace DEPRECATED_SYMBOL_NAME with SYMBOL_LINKAGE_NAME. (struct reg, regsize): Delete. (read_memory_addr): Delete; inline into callers. (rs6000_skip_prologue): Move after skip_prologue. (skip_prologue): Remove prototype. (rs6000_gdbarch_init): Remove sysv_abi variable; perform all initialization as if this variable were true. Do not install ppc64_sysv_abi_adjust_breakpoint_address. * rs6000-aix-tdep.c: Include "gdb_assert.h", "gdbtypes.h", "gdbcore.h", "target.h", "value.h", "infcall.h", "objfiles.h", and "breakpoint.h". (rs6000_find_toc_address_hook): Move here from rs6000-tdep.c. (SIG_FRAME_PC_OFFSET): Likewise. (SIG_FRAME_LR_OFFSET): Likewise. (SIG_FRAME_FP_OFFSET): Likewise. (rs6000_push_dummy_call): Likewise. (rs6000_return_value): Likewise. (rs6000_convert_from_func_ptr_addr): Likewise. (branch_dest, rs6000_software_single_step): Likewise. Replace tdep->text_segment_base by AIX_TEXT_SEGMENT_BASE. (rs6000_aix_init_osabi): Install rs6000_push_dummy_call, rs6000_return_value, and rs6000_convert_from_func_ptr_addr. Call set_gdbarch_long_double_bit and set_gdbarch_frame_red_zone_size. Set tdep->lr_frame_offset. Do not set tdep->text_segment_base. * rs6000-tdep.h (rs6000_software_single_step): Remove prototype. (AIX_TEXT_SEGMENT_BASE): New macro. * rs6000-nat.c (exec_one_dummy_insn): Replace tdep->text_segment_base by AIX_TEXT_SEGMENT_BASE. * ppc-tdep.h (ppc_deal_with_atomic_sequence): Add prototype. (struct gdbarch_tdep): Remove text_segment_base member. * ppc-linux-tdep.c (ppc_linux_init_abi): On 64-bit, install ppc64_sysv_abi_adjust_breakpoint_address. * Makefile.in (rs6000-tdep.o): Update dependencies. (rs6000-aix-tdep.o): Likewise.
This commit is contained in:
@ -1,3 +1,57 @@
|
||||
2008-05-03 Ulrich Weigand <uweigand@de.ibm.com>
|
||||
|
||||
* rs6000-tdep.c: Do not include "rs6000-tdep.h".
|
||||
(rs6000_find_toc_address_hook): Move to rs6000-aix-tdep.c.
|
||||
(SIG_FRAME_PC_OFFSET): Likewise.
|
||||
(SIG_FRAME_LR_OFFSET): Likewise.
|
||||
(SIG_FRAME_FP_OFFSET): Likewise.
|
||||
(rs6000_push_dummy_call): Likewise.
|
||||
(rs6000_return_value): Likewise.
|
||||
(rs6000_convert_from_func_ptr_addr): Likewise.
|
||||
(branch_dest, rs6000_software_single_step): Likewise.
|
||||
(deal_with_atomic_sequence): Rename to ...
|
||||
(ppc_deal_with_atomic_sequence): ... this. Adapt all callers.
|
||||
Do not call branch_dest; inline required parts of that function.
|
||||
(rs6000_skip_trampoline_code): Replace DEPRECATED_SYMBOL_NAME
|
||||
with SYMBOL_LINKAGE_NAME.
|
||||
(struct reg, regsize): Delete.
|
||||
(read_memory_addr): Delete; inline into callers.
|
||||
(rs6000_skip_prologue): Move after skip_prologue.
|
||||
(skip_prologue): Remove prototype.
|
||||
(rs6000_gdbarch_init): Remove sysv_abi variable; perform all
|
||||
initialization as if this variable were true. Do not install
|
||||
ppc64_sysv_abi_adjust_breakpoint_address.
|
||||
|
||||
* rs6000-aix-tdep.c: Include "gdb_assert.h", "gdbtypes.h",
|
||||
"gdbcore.h", "target.h", "value.h", "infcall.h", "objfiles.h",
|
||||
and "breakpoint.h".
|
||||
(rs6000_find_toc_address_hook): Move here from rs6000-tdep.c.
|
||||
(SIG_FRAME_PC_OFFSET): Likewise.
|
||||
(SIG_FRAME_LR_OFFSET): Likewise.
|
||||
(SIG_FRAME_FP_OFFSET): Likewise.
|
||||
(rs6000_push_dummy_call): Likewise.
|
||||
(rs6000_return_value): Likewise.
|
||||
(rs6000_convert_from_func_ptr_addr): Likewise.
|
||||
(branch_dest, rs6000_software_single_step): Likewise. Replace
|
||||
tdep->text_segment_base by AIX_TEXT_SEGMENT_BASE.
|
||||
(rs6000_aix_init_osabi): Install rs6000_push_dummy_call,
|
||||
rs6000_return_value, and rs6000_convert_from_func_ptr_addr.
|
||||
Call set_gdbarch_long_double_bit and set_gdbarch_frame_red_zone_size.
|
||||
Set tdep->lr_frame_offset. Do not set tdep->text_segment_base.
|
||||
|
||||
* rs6000-tdep.h (rs6000_software_single_step): Remove prototype.
|
||||
(AIX_TEXT_SEGMENT_BASE): New macro.
|
||||
* rs6000-nat.c (exec_one_dummy_insn): Replace tdep->text_segment_base
|
||||
by AIX_TEXT_SEGMENT_BASE.
|
||||
|
||||
* ppc-tdep.h (ppc_deal_with_atomic_sequence): Add prototype.
|
||||
(struct gdbarch_tdep): Remove text_segment_base member.
|
||||
* ppc-linux-tdep.c (ppc_linux_init_abi): On 64-bit, install
|
||||
ppc64_sysv_abi_adjust_breakpoint_address.
|
||||
|
||||
* Makefile.in (rs6000-tdep.o): Update dependencies.
|
||||
(rs6000-aix-tdep.o): Likewise.
|
||||
|
||||
2008-05-03 Luis Machado <luisgpm@br.ibm.com>
|
||||
Thiago Jung Bauermann <bauerman@br.ibm.com>
|
||||
|
||||
|
@ -2693,15 +2693,17 @@ rs6000-tdep.o: rs6000-tdep.c $(defs_h) $(frame_h) $(inferior_h) $(symtab_h) \
|
||||
$(reggroups_h) $(libbfd_h) $(coff_internal_h) $(libcoff_h) \
|
||||
$(coff_xcoff_h) $(libxcoff_h) $(elf_bfd_h) $(solib_svr4_h) \
|
||||
$(ppc_tdep_h) $(gdb_assert_h) $(dis_asm_h) $(trad_frame_h) \
|
||||
$(frame_unwind_h) $(frame_base_h) $(rs6000_tdep_h) $(dwarf2_frame_h) \
|
||||
$(frame_unwind_h) $(frame_base_h) $(dwarf2_frame_h) \
|
||||
$(target_descriptions) $(user_regs_h) $(elf_ppc_h) \
|
||||
$(powerpc_32_c) $(powerpc_altivec32_c) $(powerpc_403_c) \
|
||||
$(powerpc_403gc_c) $(powerpc_505_c) $(powerpc_601_c) \
|
||||
$(powerpc_602_c) $(powerpc_603_c) $(powerpc_604_c) \
|
||||
$(powerpc_64_c) $(powerpc_altivec64_c) $(powerpc_7400_c) \
|
||||
$(powerpc_750_c) $(powerpc_860_c) $(powerpc_e500_c) $(rs6000_c)
|
||||
rs6000-aix-tdep.o: rs6000-aix-tdep.c $(defs_h) $(gdb_string_h) $(osabi_h) \
|
||||
$(regcache_h) $(regset_h) $(rs6000_tdep_h) $(ppc_tdep_h)
|
||||
rs6000-aix-tdep.o: rs6000-aix-tdep.c $(defs_h) $(gdb_string_h) $(gdb_assert) \
|
||||
$(osabi_h) $(regcache_h) $(regset_h) $(gdbtypes_h) $(gdbcore_h) \
|
||||
$(target_h) $(value_h) $(infcall_h) $(objfiles_h) $(breakpoint_h) \
|
||||
$(rs6000_tdep_h) $(ppc_tdep_h)
|
||||
s390-nat.o: s390-nat.c $(defs_h) $(regcache_h) $(inferior_h) \
|
||||
$(s390_tdep_h) $(target_h) $(linux_nat_h)
|
||||
s390-tdep.o: s390-tdep.c $(defs_h) $(arch_utils_h) $(frame_h) $(inferior_h) \
|
||||
|
@ -1060,6 +1060,15 @@ ppc_linux_init_abi (struct gdbarch_info info,
|
||||
|
||||
if (tdep->wordsize == 8)
|
||||
{
|
||||
/* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
|
||||
for the descriptor and ".FN" for the entry-point -- a user
|
||||
specifying "break FN" will unexpectedly end up with a breakpoint
|
||||
on the descriptor and not the function. This architecture method
|
||||
transforms any breakpoints on descriptors into breakpoints on the
|
||||
corresponding entry point. */
|
||||
set_gdbarch_adjust_breakpoint_address
|
||||
(gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
|
||||
|
||||
/* Shared library handling. */
|
||||
set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
|
||||
set_solib_svr4_fetch_link_map_offsets
|
||||
|
@ -76,6 +76,9 @@ int ppc_floating_point_unit_p (struct gdbarch *gdbarch);
|
||||
Altivec registers (vr0 --- vr31, vrsave and vscr). */
|
||||
int ppc_altivec_support_p (struct gdbarch *gdbarch);
|
||||
|
||||
int ppc_deal_with_atomic_sequence (struct frame_info *frame);
|
||||
|
||||
|
||||
/* Register set description. */
|
||||
|
||||
struct ppc_reg_offsets
|
||||
@ -220,9 +223,6 @@ struct gdbarch_tdep
|
||||
simulator does not implement that register. */
|
||||
int *sim_regno;
|
||||
|
||||
/* Minimum possible text address. */
|
||||
CORE_ADDR text_segment_base;
|
||||
|
||||
/* ISA-specific types. */
|
||||
struct type *ppc_builtin_type_vec64;
|
||||
};
|
||||
|
@ -21,12 +21,37 @@
|
||||
|
||||
#include "defs.h"
|
||||
#include "gdb_string.h"
|
||||
#include "gdb_assert.h"
|
||||
#include "osabi.h"
|
||||
#include "regcache.h"
|
||||
#include "regset.h"
|
||||
#include "gdbtypes.h"
|
||||
#include "gdbcore.h"
|
||||
#include "target.h"
|
||||
#include "value.h"
|
||||
#include "infcall.h"
|
||||
#include "objfiles.h"
|
||||
#include "breakpoint.h"
|
||||
#include "rs6000-tdep.h"
|
||||
#include "ppc-tdep.h"
|
||||
|
||||
/* Hook for determining the TOC address when calling functions in the
|
||||
inferior under AIX. The initialization code in rs6000-nat.c sets
|
||||
this hook to point to find_toc_address. */
|
||||
|
||||
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
|
||||
|
||||
/* If the kernel has to deliver a signal, it pushes a sigcontext
|
||||
structure on the stack and then calls the signal handler, passing
|
||||
the address of the sigcontext in an argument register. Usually
|
||||
the signal handler doesn't save this register, so we have to
|
||||
access the sigcontext structure via an offset from the signal handler
|
||||
frame.
|
||||
The following constants were determined by experimentation on AIX 3.2. */
|
||||
#define SIG_FRAME_PC_OFFSET 96
|
||||
#define SIG_FRAME_LR_OFFSET 108
|
||||
#define SIG_FRAME_FP_OFFSET 284
|
||||
|
||||
|
||||
/* Core file support. */
|
||||
|
||||
@ -146,6 +171,520 @@ rs6000_aix_regset_from_core_section (struct gdbarch *gdbarch,
|
||||
}
|
||||
|
||||
|
||||
/* Pass the arguments in either registers, or in the stack. In RS/6000,
|
||||
the first eight words of the argument list (that might be less than
|
||||
eight parameters if some parameters occupy more than one word) are
|
||||
passed in r3..r10 registers. float and double parameters are
|
||||
passed in fpr's, in addition to that. Rest of the parameters if any
|
||||
are passed in user stack. There might be cases in which half of the
|
||||
parameter is copied into registers, the other half is pushed into
|
||||
stack.
|
||||
|
||||
Stack must be aligned on 64-bit boundaries when synthesizing
|
||||
function calls.
|
||||
|
||||
If the function is returning a structure, then the return address is passed
|
||||
in r3, then the first 7 words of the parameters can be passed in registers,
|
||||
starting from r4. */
|
||||
|
||||
static CORE_ADDR
|
||||
rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||||
int nargs, struct value **args, CORE_ADDR sp,
|
||||
int struct_return, CORE_ADDR struct_addr)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
int ii;
|
||||
int len = 0;
|
||||
int argno; /* current argument number */
|
||||
int argbytes; /* current argument byte */
|
||||
gdb_byte tmp_buffer[50];
|
||||
int f_argno = 0; /* current floating point argno */
|
||||
int wordsize = gdbarch_tdep (gdbarch)->wordsize;
|
||||
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
||||
|
||||
struct value *arg = 0;
|
||||
struct type *type;
|
||||
|
||||
ULONGEST saved_sp;
|
||||
|
||||
/* The calling convention this function implements assumes the
|
||||
processor has floating-point registers. We shouldn't be using it
|
||||
on PPC variants that lack them. */
|
||||
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
||||
|
||||
/* The first eight words of ther arguments are passed in registers.
|
||||
Copy them appropriately. */
|
||||
ii = 0;
|
||||
|
||||
/* If the function is returning a `struct', then the first word
|
||||
(which will be passed in r3) is used for struct return address.
|
||||
In that case we should advance one word and start from r4
|
||||
register to copy parameters. */
|
||||
if (struct_return)
|
||||
{
|
||||
regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
||||
struct_addr);
|
||||
ii++;
|
||||
}
|
||||
|
||||
/*
|
||||
effectively indirect call... gcc does...
|
||||
|
||||
return_val example( float, int);
|
||||
|
||||
eabi:
|
||||
float in fp0, int in r3
|
||||
offset of stack on overflow 8/16
|
||||
for varargs, must go by type.
|
||||
power open:
|
||||
float in r3&r4, int in r5
|
||||
offset of stack on overflow different
|
||||
both:
|
||||
return in r3 or f0. If no float, must study how gcc emulates floats;
|
||||
pay attention to arg promotion.
|
||||
User may have to cast\args to handle promotion correctly
|
||||
since gdb won't know if prototype supplied or not.
|
||||
*/
|
||||
|
||||
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
||||
{
|
||||
int reg_size = register_size (gdbarch, ii + 3);
|
||||
|
||||
arg = args[argno];
|
||||
type = check_typedef (value_type (arg));
|
||||
len = TYPE_LENGTH (type);
|
||||
|
||||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||||
{
|
||||
|
||||
/* Floating point arguments are passed in fpr's, as well as gpr's.
|
||||
There are 13 fpr's reserved for passing parameters. At this point
|
||||
there is no way we would run out of them. */
|
||||
|
||||
gdb_assert (len <= 8);
|
||||
|
||||
regcache_cooked_write (regcache,
|
||||
tdep->ppc_fp0_regnum + 1 + f_argno,
|
||||
value_contents (arg));
|
||||
++f_argno;
|
||||
}
|
||||
|
||||
if (len > reg_size)
|
||||
{
|
||||
|
||||
/* Argument takes more than one register. */
|
||||
while (argbytes < len)
|
||||
{
|
||||
gdb_byte word[MAX_REGISTER_SIZE];
|
||||
memset (word, 0, reg_size);
|
||||
memcpy (word,
|
||||
((char *) value_contents (arg)) + argbytes,
|
||||
(len - argbytes) > reg_size
|
||||
? reg_size : len - argbytes);
|
||||
regcache_cooked_write (regcache,
|
||||
tdep->ppc_gp0_regnum + 3 + ii,
|
||||
word);
|
||||
++ii, argbytes += reg_size;
|
||||
|
||||
if (ii >= 8)
|
||||
goto ran_out_of_registers_for_arguments;
|
||||
}
|
||||
argbytes = 0;
|
||||
--ii;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Argument can fit in one register. No problem. */
|
||||
int adj = gdbarch_byte_order (gdbarch)
|
||||
== BFD_ENDIAN_BIG ? reg_size - len : 0;
|
||||
gdb_byte word[MAX_REGISTER_SIZE];
|
||||
|
||||
memset (word, 0, reg_size);
|
||||
memcpy (word, value_contents (arg), len);
|
||||
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
|
||||
}
|
||||
++argno;
|
||||
}
|
||||
|
||||
ran_out_of_registers_for_arguments:
|
||||
|
||||
regcache_cooked_read_unsigned (regcache,
|
||||
gdbarch_sp_regnum (gdbarch),
|
||||
&saved_sp);
|
||||
|
||||
/* Location for 8 parameters are always reserved. */
|
||||
sp -= wordsize * 8;
|
||||
|
||||
/* Another six words for back chain, TOC register, link register, etc. */
|
||||
sp -= wordsize * 6;
|
||||
|
||||
/* Stack pointer must be quadword aligned. */
|
||||
sp &= -16;
|
||||
|
||||
/* If there are more arguments, allocate space for them in
|
||||
the stack, then push them starting from the ninth one. */
|
||||
|
||||
if ((argno < nargs) || argbytes)
|
||||
{
|
||||
int space = 0, jj;
|
||||
|
||||
if (argbytes)
|
||||
{
|
||||
space += ((len - argbytes + 3) & -4);
|
||||
jj = argno + 1;
|
||||
}
|
||||
else
|
||||
jj = argno;
|
||||
|
||||
for (; jj < nargs; ++jj)
|
||||
{
|
||||
struct value *val = args[jj];
|
||||
space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
|
||||
}
|
||||
|
||||
/* Add location required for the rest of the parameters. */
|
||||
space = (space + 15) & -16;
|
||||
sp -= space;
|
||||
|
||||
/* This is another instance we need to be concerned about
|
||||
securing our stack space. If we write anything underneath %sp
|
||||
(r1), we might conflict with the kernel who thinks he is free
|
||||
to use this area. So, update %sp first before doing anything
|
||||
else. */
|
||||
|
||||
regcache_raw_write_signed (regcache,
|
||||
gdbarch_sp_regnum (gdbarch), sp);
|
||||
|
||||
/* If the last argument copied into the registers didn't fit there
|
||||
completely, push the rest of it into stack. */
|
||||
|
||||
if (argbytes)
|
||||
{
|
||||
write_memory (sp + 24 + (ii * 4),
|
||||
value_contents (arg) + argbytes,
|
||||
len - argbytes);
|
||||
++argno;
|
||||
ii += ((len - argbytes + 3) & -4) / 4;
|
||||
}
|
||||
|
||||
/* Push the rest of the arguments into stack. */
|
||||
for (; argno < nargs; ++argno)
|
||||
{
|
||||
|
||||
arg = args[argno];
|
||||
type = check_typedef (value_type (arg));
|
||||
len = TYPE_LENGTH (type);
|
||||
|
||||
|
||||
/* Float types should be passed in fpr's, as well as in the
|
||||
stack. */
|
||||
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
||||
{
|
||||
|
||||
gdb_assert (len <= 8);
|
||||
|
||||
regcache_cooked_write (regcache,
|
||||
tdep->ppc_fp0_regnum + 1 + f_argno,
|
||||
value_contents (arg));
|
||||
++f_argno;
|
||||
}
|
||||
|
||||
write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
|
||||
ii += ((len + 3) & -4) / 4;
|
||||
}
|
||||
}
|
||||
|
||||
/* Set the stack pointer. According to the ABI, the SP is meant to
|
||||
be set _before_ the corresponding stack space is used. On AIX,
|
||||
this even applies when the target has been completely stopped!
|
||||
Not doing this can lead to conflicts with the kernel which thinks
|
||||
that it still has control over this not-yet-allocated stack
|
||||
region. */
|
||||
regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
|
||||
|
||||
/* Set back chain properly. */
|
||||
store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
|
||||
write_memory (sp, tmp_buffer, wordsize);
|
||||
|
||||
/* Point the inferior function call's return address at the dummy's
|
||||
breakpoint. */
|
||||
regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
|
||||
|
||||
/* Set the TOC register, get the value from the objfile reader
|
||||
which, in turn, gets it from the VMAP table. */
|
||||
if (rs6000_find_toc_address_hook != NULL)
|
||||
{
|
||||
CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
|
||||
regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
|
||||
}
|
||||
|
||||
target_store_registers (regcache, -1);
|
||||
return sp;
|
||||
}
|
||||
|
||||
static enum return_value_convention
|
||||
rs6000_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
||||
struct type *valtype, struct regcache *regcache,
|
||||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
gdb_byte buf[8];
|
||||
|
||||
/* The calling convention this function implements assumes the
|
||||
processor has floating-point registers. We shouldn't be using it
|
||||
on PowerPC variants that lack them. */
|
||||
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
||||
|
||||
/* AltiVec extension: Functions that declare a vector data type as a
|
||||
return value place that return value in VR2. */
|
||||
if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
|
||||
&& TYPE_LENGTH (valtype) == 16)
|
||||
{
|
||||
if (readbuf)
|
||||
regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
|
||||
if (writebuf)
|
||||
regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
|
||||
|
||||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||||
}
|
||||
|
||||
/* If the called subprogram returns an aggregate, there exists an
|
||||
implicit first argument, whose value is the address of a caller-
|
||||
allocated buffer into which the callee is assumed to store its
|
||||
return value. All explicit parameters are appropriately
|
||||
relabeled. */
|
||||
if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
||||
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
||||
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
||||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||||
|
||||
/* Scalar floating-point values are returned in FPR1 for float or
|
||||
double, and in FPR1:FPR2 for quadword precision. Fortran
|
||||
complex*8 and complex*16 are returned in FPR1:FPR2, and
|
||||
complex*32 is returned in FPR1:FPR4. */
|
||||
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
|
||||
&& (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
|
||||
{
|
||||
struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
|
||||
gdb_byte regval[8];
|
||||
|
||||
/* FIXME: kettenis/2007-01-01: Add support for quadword
|
||||
precision and complex. */
|
||||
|
||||
if (readbuf)
|
||||
{
|
||||
regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
|
||||
convert_typed_floating (regval, regtype, readbuf, valtype);
|
||||
}
|
||||
if (writebuf)
|
||||
{
|
||||
convert_typed_floating (writebuf, valtype, regval, regtype);
|
||||
regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
|
||||
}
|
||||
|
||||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||||
}
|
||||
|
||||
/* Values of the types int, long, short, pointer, and char (length
|
||||
is less than or equal to four bytes), as well as bit values of
|
||||
lengths less than or equal to 32 bits, must be returned right
|
||||
justified in GPR3 with signed values sign extended and unsigned
|
||||
values zero extended, as necessary. */
|
||||
if (TYPE_LENGTH (valtype) <= tdep->wordsize)
|
||||
{
|
||||
if (readbuf)
|
||||
{
|
||||
ULONGEST regval;
|
||||
|
||||
/* For reading we don't have to worry about sign extension. */
|
||||
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
||||
®val);
|
||||
store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
|
||||
}
|
||||
if (writebuf)
|
||||
{
|
||||
/* For writing, use unpack_long since that should handle any
|
||||
required sign extension. */
|
||||
regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
||||
unpack_long (valtype, writebuf));
|
||||
}
|
||||
|
||||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||||
}
|
||||
|
||||
/* Eight-byte non-floating-point scalar values must be returned in
|
||||
GPR3:GPR4. */
|
||||
|
||||
if (TYPE_LENGTH (valtype) == 8)
|
||||
{
|
||||
gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
|
||||
gdb_assert (tdep->wordsize == 4);
|
||||
|
||||
if (readbuf)
|
||||
{
|
||||
gdb_byte regval[8];
|
||||
|
||||
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
|
||||
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
|
||||
regval + 4);
|
||||
memcpy (readbuf, regval, 8);
|
||||
}
|
||||
if (writebuf)
|
||||
{
|
||||
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
|
||||
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
|
||||
writebuf + 4);
|
||||
}
|
||||
|
||||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||||
}
|
||||
|
||||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||||
}
|
||||
|
||||
/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
|
||||
|
||||
Usually a function pointer's representation is simply the address
|
||||
of the function. On the RS/6000 however, a function pointer is
|
||||
represented by a pointer to an OPD entry. This OPD entry contains
|
||||
three words, the first word is the address of the function, the
|
||||
second word is the TOC pointer (r2), and the third word is the
|
||||
static chain value. Throughout GDB it is currently assumed that a
|
||||
function pointer contains the address of the function, which is not
|
||||
easy to fix. In addition, the conversion of a function address to
|
||||
a function pointer would require allocation of an OPD entry in the
|
||||
inferior's memory space, with all its drawbacks. To be able to
|
||||
call C++ virtual methods in the inferior (which are called via
|
||||
function pointers), find_function_addr uses this function to get the
|
||||
function address from a function pointer. */
|
||||
|
||||
/* Return real function address if ADDR (a function pointer) is in the data
|
||||
space and is therefore a special function pointer. */
|
||||
|
||||
static CORE_ADDR
|
||||
rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
||||
CORE_ADDR addr,
|
||||
struct target_ops *targ)
|
||||
{
|
||||
struct obj_section *s;
|
||||
|
||||
s = find_pc_section (addr);
|
||||
if (s && s->the_bfd_section->flags & SEC_CODE)
|
||||
return addr;
|
||||
|
||||
/* ADDR is in the data space, so it's a special function pointer. */
|
||||
return read_memory_unsigned_integer (addr, gdbarch_tdep (gdbarch)->wordsize);
|
||||
}
|
||||
|
||||
|
||||
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
||||
|
||||
static CORE_ADDR
|
||||
branch_dest (struct frame_info *frame, int opcode, int instr,
|
||||
CORE_ADDR pc, CORE_ADDR safety)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
||||
CORE_ADDR dest;
|
||||
int immediate;
|
||||
int absolute;
|
||||
int ext_op;
|
||||
|
||||
absolute = (int) ((instr >> 1) & 1);
|
||||
|
||||
switch (opcode)
|
||||
{
|
||||
case 18:
|
||||
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
||||
if (absolute)
|
||||
dest = immediate;
|
||||
else
|
||||
dest = pc + immediate;
|
||||
break;
|
||||
|
||||
case 16:
|
||||
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
||||
if (absolute)
|
||||
dest = immediate;
|
||||
else
|
||||
dest = pc + immediate;
|
||||
break;
|
||||
|
||||
case 19:
|
||||
ext_op = (instr >> 1) & 0x3ff;
|
||||
|
||||
if (ext_op == 16) /* br conditional register */
|
||||
{
|
||||
dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
|
||||
|
||||
/* If we are about to return from a signal handler, dest is
|
||||
something like 0x3c90. The current frame is a signal handler
|
||||
caller frame, upon completion of the sigreturn system call
|
||||
execution will return to the saved PC in the frame. */
|
||||
if (dest < AIX_TEXT_SEGMENT_BASE)
|
||||
dest = read_memory_unsigned_integer
|
||||
(get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
|
||||
tdep->wordsize);
|
||||
}
|
||||
|
||||
else if (ext_op == 528) /* br cond to count reg */
|
||||
{
|
||||
dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
|
||||
|
||||
/* If we are about to execute a system call, dest is something
|
||||
like 0x22fc or 0x3b00. Upon completion the system call
|
||||
will return to the address in the link register. */
|
||||
if (dest < AIX_TEXT_SEGMENT_BASE)
|
||||
dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
|
||||
}
|
||||
else
|
||||
return -1;
|
||||
break;
|
||||
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
|
||||
}
|
||||
|
||||
/* AIX does not support PT_STEP. Simulate it. */
|
||||
|
||||
static int
|
||||
rs6000_software_single_step (struct frame_info *frame)
|
||||
{
|
||||
int ii, insn;
|
||||
CORE_ADDR loc;
|
||||
CORE_ADDR breaks[2];
|
||||
int opcode;
|
||||
|
||||
loc = get_frame_pc (frame);
|
||||
|
||||
insn = read_memory_integer (loc, 4);
|
||||
|
||||
if (ppc_deal_with_atomic_sequence (frame))
|
||||
return 1;
|
||||
|
||||
breaks[0] = loc + PPC_INSN_SIZE;
|
||||
opcode = insn >> 26;
|
||||
breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
|
||||
|
||||
/* Don't put two breakpoints on the same address. */
|
||||
if (breaks[1] == breaks[0])
|
||||
breaks[1] = -1;
|
||||
|
||||
for (ii = 0; ii < 2; ++ii)
|
||||
{
|
||||
/* ignore invalid breakpoint. */
|
||||
if (breaks[ii] == -1)
|
||||
continue;
|
||||
insert_single_step_breakpoint (breaks[ii]);
|
||||
}
|
||||
|
||||
errno = 0; /* FIXME, don't ignore errors! */
|
||||
/* What errors? {read,write}_memory call error(). */
|
||||
return 1;
|
||||
}
|
||||
|
||||
static enum gdb_osabi
|
||||
rs6000_aix_osabi_sniffer (bfd *abfd)
|
||||
{
|
||||
@ -159,15 +698,37 @@ rs6000_aix_osabi_sniffer (bfd *abfd)
|
||||
static void
|
||||
rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
|
||||
/* RS6000/AIX does not support PT_STEP. Has to be simulated. */
|
||||
set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
|
||||
|
||||
set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
|
||||
set_gdbarch_return_value (gdbarch, rs6000_return_value);
|
||||
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||||
|
||||
/* Handle RS/6000 function pointers (which are really function
|
||||
descriptors). */
|
||||
set_gdbarch_convert_from_func_ptr_addr
|
||||
(gdbarch, rs6000_convert_from_func_ptr_addr);
|
||||
|
||||
/* Core file support. */
|
||||
set_gdbarch_regset_from_core_section
|
||||
(gdbarch, rs6000_aix_regset_from_core_section);
|
||||
|
||||
/* Minimum possible text address in AIX. */
|
||||
gdbarch_tdep (gdbarch)->text_segment_base = 0x10000000;
|
||||
if (tdep->wordsize == 8)
|
||||
tdep->lr_frame_offset = 16;
|
||||
else
|
||||
tdep->lr_frame_offset = 8;
|
||||
|
||||
if (tdep->wordsize == 4)
|
||||
/* PowerOpen / AIX 32 bit. The saved area or red zone consists of
|
||||
19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
|
||||
Problem is, 220 isn't frame (16 byte) aligned. Round it up to
|
||||
224. */
|
||||
set_gdbarch_frame_red_zone_size (gdbarch, 224);
|
||||
else
|
||||
set_gdbarch_frame_red_zone_size (gdbarch, 0);
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -578,7 +578,7 @@ rs6000_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
|
||||
static void
|
||||
exec_one_dummy_insn (struct gdbarch *gdbarch)
|
||||
{
|
||||
#define DUMMY_INSN_ADDR gdbarch_tdep (gdbarch)->text_segment_base+0x200
|
||||
#define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
|
||||
|
||||
int ret, status, pid;
|
||||
CORE_ADDR prev_pc;
|
||||
|
@ -61,8 +61,6 @@
|
||||
#include "frame-unwind.h"
|
||||
#include "frame-base.h"
|
||||
|
||||
#include "rs6000-tdep.h"
|
||||
|
||||
#include "features/rs6000/powerpc-32.c"
|
||||
#include "features/rs6000/powerpc-altivec32.c"
|
||||
#include "features/rs6000/powerpc-403.c"
|
||||
@ -111,17 +109,6 @@ static const char *powerpc_vector_strings[] =
|
||||
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
|
||||
static const char *powerpc_vector_abi_string = "auto";
|
||||
|
||||
/* If the kernel has to deliver a signal, it pushes a sigcontext
|
||||
structure on the stack and then calls the signal handler, passing
|
||||
the address of the sigcontext in an argument register. Usually
|
||||
the signal handler doesn't save this register, so we have to
|
||||
access the sigcontext structure via an offset from the signal handler
|
||||
frame.
|
||||
The following constants were determined by experimentation on AIX 3.2. */
|
||||
#define SIG_FRAME_PC_OFFSET 96
|
||||
#define SIG_FRAME_LR_OFFSET 108
|
||||
#define SIG_FRAME_FP_OFFSET 284
|
||||
|
||||
/* To be used by skip_prologue. */
|
||||
|
||||
struct rs6000_framedata
|
||||
@ -145,32 +132,6 @@ struct rs6000_framedata
|
||||
int vrsave_offset; /* offset of saved vrsave register */
|
||||
};
|
||||
|
||||
/* Description of a single register. */
|
||||
|
||||
struct reg
|
||||
{
|
||||
char *name; /* name of register */
|
||||
unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
|
||||
unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
|
||||
unsigned char fpr; /* whether register is floating-point */
|
||||
unsigned char pseudo; /* whether register is pseudo */
|
||||
int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
|
||||
This is an ISA SPR number, not a GDB
|
||||
register number. */
|
||||
};
|
||||
|
||||
/* Hook for determining the TOC address when calling functions in the
|
||||
inferior under AIX. The initialization code in rs6000-nat.c sets
|
||||
this hook to point to find_toc_address. */
|
||||
|
||||
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
|
||||
|
||||
/* Static function prototypes */
|
||||
|
||||
static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
|
||||
int instr, CORE_ADDR pc, CORE_ADDR safety);
|
||||
static CORE_ADDR skip_prologue (struct gdbarch *, CORE_ADDR, CORE_ADDR,
|
||||
struct rs6000_framedata *);
|
||||
|
||||
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
|
||||
int
|
||||
@ -755,44 +716,6 @@ ppc_collect_vrregset (const struct regset *regset,
|
||||
}
|
||||
|
||||
|
||||
/* Read a LEN-byte address from debugged memory address MEMADDR. */
|
||||
|
||||
static CORE_ADDR
|
||||
read_memory_addr (CORE_ADDR memaddr, int len)
|
||||
{
|
||||
return read_memory_unsigned_integer (memaddr, len);
|
||||
}
|
||||
|
||||
static CORE_ADDR
|
||||
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||||
{
|
||||
struct rs6000_framedata frame;
|
||||
CORE_ADDR limit_pc, func_addr;
|
||||
|
||||
/* See if we can determine the end of the prologue via the symbol table.
|
||||
If so, then return either PC, or the PC after the prologue, whichever
|
||||
is greater. */
|
||||
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
||||
{
|
||||
CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
|
||||
if (post_prologue_pc != 0)
|
||||
return max (pc, post_prologue_pc);
|
||||
}
|
||||
|
||||
/* Can't determine prologue from the symbol table, need to examine
|
||||
instructions. */
|
||||
|
||||
/* Find an upper limit on the function prologue using the debug
|
||||
information. If the debug information could not be used to provide
|
||||
that bound, then use an arbitrary large number as the upper bound. */
|
||||
limit_pc = skip_prologue_using_sal (pc);
|
||||
if (limit_pc == 0)
|
||||
limit_pc = pc + 100; /* Magic. */
|
||||
|
||||
pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
|
||||
return pc;
|
||||
}
|
||||
|
||||
static int
|
||||
insn_changes_sp_or_jumps (unsigned long insn)
|
||||
{
|
||||
@ -903,75 +826,6 @@ rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
|
||||
return get_frame_register_unsigned (frame, 3 + argi);
|
||||
}
|
||||
|
||||
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
||||
|
||||
static CORE_ADDR
|
||||
branch_dest (struct frame_info *frame, int opcode, int instr,
|
||||
CORE_ADDR pc, CORE_ADDR safety)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
||||
CORE_ADDR dest;
|
||||
int immediate;
|
||||
int absolute;
|
||||
int ext_op;
|
||||
|
||||
absolute = (int) ((instr >> 1) & 1);
|
||||
|
||||
switch (opcode)
|
||||
{
|
||||
case 18:
|
||||
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
||||
if (absolute)
|
||||
dest = immediate;
|
||||
else
|
||||
dest = pc + immediate;
|
||||
break;
|
||||
|
||||
case 16:
|
||||
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
||||
if (absolute)
|
||||
dest = immediate;
|
||||
else
|
||||
dest = pc + immediate;
|
||||
break;
|
||||
|
||||
case 19:
|
||||
ext_op = (instr >> 1) & 0x3ff;
|
||||
|
||||
if (ext_op == 16) /* br conditional register */
|
||||
{
|
||||
dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
|
||||
|
||||
/* If we are about to return from a signal handler, dest is
|
||||
something like 0x3c90. The current frame is a signal handler
|
||||
caller frame, upon completion of the sigreturn system call
|
||||
execution will return to the saved PC in the frame. */
|
||||
if (dest < tdep->text_segment_base)
|
||||
dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
|
||||
tdep->wordsize);
|
||||
}
|
||||
|
||||
else if (ext_op == 528) /* br cond to count reg */
|
||||
{
|
||||
dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
|
||||
|
||||
/* If we are about to execute a system call, dest is something
|
||||
like 0x22fc or 0x3b00. Upon completion the system call
|
||||
will return to the address in the link register. */
|
||||
if (dest < tdep->text_segment_base)
|
||||
dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
|
||||
}
|
||||
else
|
||||
return -1;
|
||||
break;
|
||||
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
return (dest < tdep->text_segment_base) ? safety : dest;
|
||||
}
|
||||
|
||||
|
||||
/* Sequence of bytes for breakpoint instruction. */
|
||||
|
||||
const static unsigned char *
|
||||
@ -1003,13 +857,12 @@ rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
|
||||
is found, attempt to step through it. A breakpoint is placed at the end of
|
||||
the sequence. */
|
||||
|
||||
static int
|
||||
deal_with_atomic_sequence (struct frame_info *frame)
|
||||
int
|
||||
ppc_deal_with_atomic_sequence (struct frame_info *frame)
|
||||
{
|
||||
CORE_ADDR pc = get_frame_pc (frame);
|
||||
CORE_ADDR breaks[2] = {-1, -1};
|
||||
CORE_ADDR loc = pc;
|
||||
CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
|
||||
CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
|
||||
int insn = read_memory_integer (loc, PPC_INSN_SIZE);
|
||||
int insn_count;
|
||||
@ -1036,19 +889,20 @@ deal_with_atomic_sequence (struct frame_info *frame)
|
||||
its destination address. */
|
||||
if ((insn & BC_MASK) == BC_INSTRUCTION)
|
||||
{
|
||||
int immediate = ((insn & ~3) << 16) >> 16;
|
||||
int absolute = ((insn >> 1) & 1);
|
||||
|
||||
if (bc_insn_count >= 1)
|
||||
return 0; /* More than one conditional branch found, fallback
|
||||
to the standard single-step code. */
|
||||
|
||||
opcode = insn >> 26;
|
||||
branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
|
||||
|
||||
if (branch_bp != -1)
|
||||
{
|
||||
breaks[1] = branch_bp;
|
||||
bc_insn_count++;
|
||||
last_breakpoint++;
|
||||
}
|
||||
|
||||
if (absolute)
|
||||
breaks[1] = immediate;
|
||||
else
|
||||
breaks[1] = pc + immediate;
|
||||
|
||||
bc_insn_count++;
|
||||
last_breakpoint++;
|
||||
}
|
||||
|
||||
if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
|
||||
@ -1083,48 +937,6 @@ deal_with_atomic_sequence (struct frame_info *frame)
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* AIX does not support PT_STEP. Simulate it. */
|
||||
|
||||
int
|
||||
rs6000_software_single_step (struct frame_info *frame)
|
||||
{
|
||||
CORE_ADDR dummy;
|
||||
int breakp_sz;
|
||||
const gdb_byte *breakp
|
||||
= rs6000_breakpoint_from_pc (get_frame_arch (frame), &dummy, &breakp_sz);
|
||||
int ii, insn;
|
||||
CORE_ADDR loc;
|
||||
CORE_ADDR breaks[2];
|
||||
int opcode;
|
||||
|
||||
loc = get_frame_pc (frame);
|
||||
|
||||
insn = read_memory_integer (loc, 4);
|
||||
|
||||
if (deal_with_atomic_sequence (frame))
|
||||
return 1;
|
||||
|
||||
breaks[0] = loc + breakp_sz;
|
||||
opcode = insn >> 26;
|
||||
breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
|
||||
|
||||
/* Don't put two breakpoints on the same address. */
|
||||
if (breaks[1] == breaks[0])
|
||||
breaks[1] = -1;
|
||||
|
||||
for (ii = 0; ii < 2; ++ii)
|
||||
{
|
||||
/* ignore invalid breakpoint. */
|
||||
if (breaks[ii] == -1)
|
||||
continue;
|
||||
insert_single_step_breakpoint (breaks[ii]);
|
||||
}
|
||||
|
||||
errno = 0; /* FIXME, don't ignore errors! */
|
||||
/* What errors? {read,write}_memory call error(). */
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
#define SIGNED_SHORT(x) \
|
||||
((sizeof (short) == 2) \
|
||||
@ -1830,11 +1642,35 @@ skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
|
||||
return last_prologue_pc;
|
||||
}
|
||||
|
||||
static CORE_ADDR
|
||||
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||||
{
|
||||
struct rs6000_framedata frame;
|
||||
CORE_ADDR limit_pc, func_addr;
|
||||
|
||||
/*************************************************************************
|
||||
Support for creating pushing a dummy frame into the stack, and popping
|
||||
frames, etc.
|
||||
*************************************************************************/
|
||||
/* See if we can determine the end of the prologue via the symbol table.
|
||||
If so, then return either PC, or the PC after the prologue, whichever
|
||||
is greater. */
|
||||
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
||||
{
|
||||
CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
|
||||
if (post_prologue_pc != 0)
|
||||
return max (pc, post_prologue_pc);
|
||||
}
|
||||
|
||||
/* Can't determine prologue from the symbol table, need to examine
|
||||
instructions. */
|
||||
|
||||
/* Find an upper limit on the function prologue using the debug
|
||||
information. If the debug information could not be used to provide
|
||||
that bound, then use an arbitrary large number as the upper bound. */
|
||||
limit_pc = skip_prologue_using_sal (pc);
|
||||
if (limit_pc == 0)
|
||||
limit_pc = pc + 100; /* Magic. */
|
||||
|
||||
pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
|
||||
return pc;
|
||||
}
|
||||
|
||||
|
||||
/* All the ABI's require 16 byte alignment. */
|
||||
@ -1844,378 +1680,6 @@ rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||||
return (addr & -16);
|
||||
}
|
||||
|
||||
/* Pass the arguments in either registers, or in the stack. In RS/6000,
|
||||
the first eight words of the argument list (that might be less than
|
||||
eight parameters if some parameters occupy more than one word) are
|
||||
passed in r3..r10 registers. float and double parameters are
|
||||
passed in fpr's, in addition to that. Rest of the parameters if any
|
||||
are passed in user stack. There might be cases in which half of the
|
||||
parameter is copied into registers, the other half is pushed into
|
||||
stack.
|
||||
|
||||
Stack must be aligned on 64-bit boundaries when synthesizing
|
||||
function calls.
|
||||
|
||||
If the function is returning a structure, then the return address is passed
|
||||
in r3, then the first 7 words of the parameters can be passed in registers,
|
||||
starting from r4. */
|
||||
|
||||
static CORE_ADDR
|
||||
rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||||
int nargs, struct value **args, CORE_ADDR sp,
|
||||
int struct_return, CORE_ADDR struct_addr)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
int ii;
|
||||
int len = 0;
|
||||
int argno; /* current argument number */
|
||||
int argbytes; /* current argument byte */
|
||||
gdb_byte tmp_buffer[50];
|
||||
int f_argno = 0; /* current floating point argno */
|
||||
int wordsize = gdbarch_tdep (gdbarch)->wordsize;
|
||||
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
||||
|
||||
struct value *arg = 0;
|
||||
struct type *type;
|
||||
|
||||
ULONGEST saved_sp;
|
||||
|
||||
/* The calling convention this function implements assumes the
|
||||
processor has floating-point registers. We shouldn't be using it
|
||||
on PPC variants that lack them. */
|
||||
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
||||
|
||||
/* The first eight words of ther arguments are passed in registers.
|
||||
Copy them appropriately. */
|
||||
ii = 0;
|
||||
|
||||
/* If the function is returning a `struct', then the first word
|
||||
(which will be passed in r3) is used for struct return address.
|
||||
In that case we should advance one word and start from r4
|
||||
register to copy parameters. */
|
||||
if (struct_return)
|
||||
{
|
||||
regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
||||
struct_addr);
|
||||
ii++;
|
||||
}
|
||||
|
||||
/*
|
||||
effectively indirect call... gcc does...
|
||||
|
||||
return_val example( float, int);
|
||||
|
||||
eabi:
|
||||
float in fp0, int in r3
|
||||
offset of stack on overflow 8/16
|
||||
for varargs, must go by type.
|
||||
power open:
|
||||
float in r3&r4, int in r5
|
||||
offset of stack on overflow different
|
||||
both:
|
||||
return in r3 or f0. If no float, must study how gcc emulates floats;
|
||||
pay attention to arg promotion.
|
||||
User may have to cast\args to handle promotion correctly
|
||||
since gdb won't know if prototype supplied or not.
|
||||
*/
|
||||
|
||||
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
||||
{
|
||||
int reg_size = register_size (gdbarch, ii + 3);
|
||||
|
||||
arg = args[argno];
|
||||
type = check_typedef (value_type (arg));
|
||||
len = TYPE_LENGTH (type);
|
||||
|
||||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||||
{
|
||||
|
||||
/* Floating point arguments are passed in fpr's, as well as gpr's.
|
||||
There are 13 fpr's reserved for passing parameters. At this point
|
||||
there is no way we would run out of them. */
|
||||
|
||||
gdb_assert (len <= 8);
|
||||
|
||||
regcache_cooked_write (regcache,
|
||||
tdep->ppc_fp0_regnum + 1 + f_argno,
|
||||
value_contents (arg));
|
||||
++f_argno;
|
||||
}
|
||||
|
||||
if (len > reg_size)
|
||||
{
|
||||
|
||||
/* Argument takes more than one register. */
|
||||
while (argbytes < len)
|
||||
{
|
||||
gdb_byte word[MAX_REGISTER_SIZE];
|
||||
memset (word, 0, reg_size);
|
||||
memcpy (word,
|
||||
((char *) value_contents (arg)) + argbytes,
|
||||
(len - argbytes) > reg_size
|
||||
? reg_size : len - argbytes);
|
||||
regcache_cooked_write (regcache,
|
||||
tdep->ppc_gp0_regnum + 3 + ii,
|
||||
word);
|
||||
++ii, argbytes += reg_size;
|
||||
|
||||
if (ii >= 8)
|
||||
goto ran_out_of_registers_for_arguments;
|
||||
}
|
||||
argbytes = 0;
|
||||
--ii;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Argument can fit in one register. No problem. */
|
||||
int adj = gdbarch_byte_order (gdbarch)
|
||||
== BFD_ENDIAN_BIG ? reg_size - len : 0;
|
||||
gdb_byte word[MAX_REGISTER_SIZE];
|
||||
|
||||
memset (word, 0, reg_size);
|
||||
memcpy (word, value_contents (arg), len);
|
||||
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
|
||||
}
|
||||
++argno;
|
||||
}
|
||||
|
||||
ran_out_of_registers_for_arguments:
|
||||
|
||||
regcache_cooked_read_unsigned (regcache,
|
||||
gdbarch_sp_regnum (gdbarch),
|
||||
&saved_sp);
|
||||
|
||||
/* Location for 8 parameters are always reserved. */
|
||||
sp -= wordsize * 8;
|
||||
|
||||
/* Another six words for back chain, TOC register, link register, etc. */
|
||||
sp -= wordsize * 6;
|
||||
|
||||
/* Stack pointer must be quadword aligned. */
|
||||
sp &= -16;
|
||||
|
||||
/* If there are more arguments, allocate space for them in
|
||||
the stack, then push them starting from the ninth one. */
|
||||
|
||||
if ((argno < nargs) || argbytes)
|
||||
{
|
||||
int space = 0, jj;
|
||||
|
||||
if (argbytes)
|
||||
{
|
||||
space += ((len - argbytes + 3) & -4);
|
||||
jj = argno + 1;
|
||||
}
|
||||
else
|
||||
jj = argno;
|
||||
|
||||
for (; jj < nargs; ++jj)
|
||||
{
|
||||
struct value *val = args[jj];
|
||||
space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
|
||||
}
|
||||
|
||||
/* Add location required for the rest of the parameters. */
|
||||
space = (space + 15) & -16;
|
||||
sp -= space;
|
||||
|
||||
/* This is another instance we need to be concerned about
|
||||
securing our stack space. If we write anything underneath %sp
|
||||
(r1), we might conflict with the kernel who thinks he is free
|
||||
to use this area. So, update %sp first before doing anything
|
||||
else. */
|
||||
|
||||
regcache_raw_write_signed (regcache,
|
||||
gdbarch_sp_regnum (gdbarch), sp);
|
||||
|
||||
/* If the last argument copied into the registers didn't fit there
|
||||
completely, push the rest of it into stack. */
|
||||
|
||||
if (argbytes)
|
||||
{
|
||||
write_memory (sp + 24 + (ii * 4),
|
||||
value_contents (arg) + argbytes,
|
||||
len - argbytes);
|
||||
++argno;
|
||||
ii += ((len - argbytes + 3) & -4) / 4;
|
||||
}
|
||||
|
||||
/* Push the rest of the arguments into stack. */
|
||||
for (; argno < nargs; ++argno)
|
||||
{
|
||||
|
||||
arg = args[argno];
|
||||
type = check_typedef (value_type (arg));
|
||||
len = TYPE_LENGTH (type);
|
||||
|
||||
|
||||
/* Float types should be passed in fpr's, as well as in the
|
||||
stack. */
|
||||
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
||||
{
|
||||
|
||||
gdb_assert (len <= 8);
|
||||
|
||||
regcache_cooked_write (regcache,
|
||||
tdep->ppc_fp0_regnum + 1 + f_argno,
|
||||
value_contents (arg));
|
||||
++f_argno;
|
||||
}
|
||||
|
||||
write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
|
||||
ii += ((len + 3) & -4) / 4;
|
||||
}
|
||||
}
|
||||
|
||||
/* Set the stack pointer. According to the ABI, the SP is meant to
|
||||
be set _before_ the corresponding stack space is used. On AIX,
|
||||
this even applies when the target has been completely stopped!
|
||||
Not doing this can lead to conflicts with the kernel which thinks
|
||||
that it still has control over this not-yet-allocated stack
|
||||
region. */
|
||||
regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
|
||||
|
||||
/* Set back chain properly. */
|
||||
store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
|
||||
write_memory (sp, tmp_buffer, wordsize);
|
||||
|
||||
/* Point the inferior function call's return address at the dummy's
|
||||
breakpoint. */
|
||||
regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
|
||||
|
||||
/* Set the TOC register, get the value from the objfile reader
|
||||
which, in turn, gets it from the VMAP table. */
|
||||
if (rs6000_find_toc_address_hook != NULL)
|
||||
{
|
||||
CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
|
||||
regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
|
||||
}
|
||||
|
||||
target_store_registers (regcache, -1);
|
||||
return sp;
|
||||
}
|
||||
|
||||
static enum return_value_convention
|
||||
rs6000_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
||||
struct type *valtype, struct regcache *regcache,
|
||||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
gdb_byte buf[8];
|
||||
|
||||
/* The calling convention this function implements assumes the
|
||||
processor has floating-point registers. We shouldn't be using it
|
||||
on PowerPC variants that lack them. */
|
||||
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
||||
|
||||
/* AltiVec extension: Functions that declare a vector data type as a
|
||||
return value place that return value in VR2. */
|
||||
if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
|
||||
&& TYPE_LENGTH (valtype) == 16)
|
||||
{
|
||||
if (readbuf)
|
||||
regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
|
||||
if (writebuf)
|
||||
regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
|
||||
|
||||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||||
}
|
||||
|
||||
/* If the called subprogram returns an aggregate, there exists an
|
||||
implicit first argument, whose value is the address of a caller-
|
||||
allocated buffer into which the callee is assumed to store its
|
||||
return value. All explicit parameters are appropriately
|
||||
relabeled. */
|
||||
if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
||||
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
||||
|| TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
|
||||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||||
|
||||
/* Scalar floating-point values are returned in FPR1 for float or
|
||||
double, and in FPR1:FPR2 for quadword precision. Fortran
|
||||
complex*8 and complex*16 are returned in FPR1:FPR2, and
|
||||
complex*32 is returned in FPR1:FPR4. */
|
||||
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
|
||||
&& (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
|
||||
{
|
||||
struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
|
||||
gdb_byte regval[8];
|
||||
|
||||
/* FIXME: kettenis/2007-01-01: Add support for quadword
|
||||
precision and complex. */
|
||||
|
||||
if (readbuf)
|
||||
{
|
||||
regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
|
||||
convert_typed_floating (regval, regtype, readbuf, valtype);
|
||||
}
|
||||
if (writebuf)
|
||||
{
|
||||
convert_typed_floating (writebuf, valtype, regval, regtype);
|
||||
regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
|
||||
}
|
||||
|
||||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||||
}
|
||||
|
||||
/* Values of the types int, long, short, pointer, and char (length
|
||||
is less than or equal to four bytes), as well as bit values of
|
||||
lengths less than or equal to 32 bits, must be returned right
|
||||
justified in GPR3 with signed values sign extended and unsigned
|
||||
values zero extended, as necessary. */
|
||||
if (TYPE_LENGTH (valtype) <= tdep->wordsize)
|
||||
{
|
||||
if (readbuf)
|
||||
{
|
||||
ULONGEST regval;
|
||||
|
||||
/* For reading we don't have to worry about sign extension. */
|
||||
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
||||
®val);
|
||||
store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
|
||||
}
|
||||
if (writebuf)
|
||||
{
|
||||
/* For writing, use unpack_long since that should handle any
|
||||
required sign extension. */
|
||||
regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
||||
unpack_long (valtype, writebuf));
|
||||
}
|
||||
|
||||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||||
}
|
||||
|
||||
/* Eight-byte non-floating-point scalar values must be returned in
|
||||
GPR3:GPR4. */
|
||||
|
||||
if (TYPE_LENGTH (valtype) == 8)
|
||||
{
|
||||
gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
|
||||
gdb_assert (tdep->wordsize == 4);
|
||||
|
||||
if (readbuf)
|
||||
{
|
||||
gdb_byte regval[8];
|
||||
|
||||
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
|
||||
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
|
||||
regval + 4);
|
||||
memcpy (readbuf, regval, 8);
|
||||
}
|
||||
if (writebuf)
|
||||
{
|
||||
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
|
||||
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
|
||||
writebuf + 4);
|
||||
}
|
||||
|
||||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||||
}
|
||||
|
||||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||||
}
|
||||
|
||||
/* Return whether handle_inferior_event() should proceed through code
|
||||
starting at PC in function NAME when stepping.
|
||||
|
||||
@ -2262,6 +1726,7 @@ rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
|
||||
CORE_ADDR
|
||||
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
||||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
|
||||
unsigned int ii, op;
|
||||
int rel;
|
||||
CORE_ADDR solib_target_pc;
|
||||
@ -2282,8 +1747,7 @@ rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
||||
/* Check for bigtoc fixup code. */
|
||||
msymbol = lookup_minimal_symbol_by_pc (pc);
|
||||
if (msymbol
|
||||
&& rs6000_in_solib_return_trampoline (pc,
|
||||
DEPRECATED_SYMBOL_NAME (msymbol)))
|
||||
&& rs6000_in_solib_return_trampoline (pc, SYMBOL_LINKAGE_NAME (msymbol)))
|
||||
{
|
||||
/* Double-check that the third instruction from PC is relative "b". */
|
||||
op = read_memory_integer (pc + 8, 4);
|
||||
@ -2308,8 +1772,7 @@ rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
||||
return 0;
|
||||
}
|
||||
ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
|
||||
pc = read_memory_addr (ii,
|
||||
gdbarch_tdep (get_frame_arch (frame))->wordsize); /* (r11) value */
|
||||
pc = read_memory_unsigned_integer (ii, tdep->wordsize); /* (r11) value */
|
||||
return pc;
|
||||
}
|
||||
|
||||
@ -2355,15 +1818,6 @@ rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
|
||||
return tdep->ppc_builtin_type_vec64;
|
||||
}
|
||||
|
||||
/* Return the size of register REG when words are WORDSIZE bytes long. If REG
|
||||
isn't available with that word size, return 0. */
|
||||
|
||||
static int
|
||||
regsize (const struct reg *reg, int wordsize)
|
||||
{
|
||||
return wordsize == 8 ? reg->sz64 : reg->sz32;
|
||||
}
|
||||
|
||||
/* Return the name of register number REGNO, or the empty string if it
|
||||
is an anonymous register. */
|
||||
|
||||
@ -2799,40 +2253,6 @@ rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
|
||||
}
|
||||
}
|
||||
|
||||
/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
|
||||
|
||||
Usually a function pointer's representation is simply the address
|
||||
of the function. On the RS/6000 however, a function pointer is
|
||||
represented by a pointer to an OPD entry. This OPD entry contains
|
||||
three words, the first word is the address of the function, the
|
||||
second word is the TOC pointer (r2), and the third word is the
|
||||
static chain value. Throughout GDB it is currently assumed that a
|
||||
function pointer contains the address of the function, which is not
|
||||
easy to fix. In addition, the conversion of a function address to
|
||||
a function pointer would require allocation of an OPD entry in the
|
||||
inferior's memory space, with all its drawbacks. To be able to
|
||||
call C++ virtual methods in the inferior (which are called via
|
||||
function pointers), find_function_addr uses this function to get the
|
||||
function address from a function pointer. */
|
||||
|
||||
/* Return real function address if ADDR (a function pointer) is in the data
|
||||
space and is therefore a special function pointer. */
|
||||
|
||||
static CORE_ADDR
|
||||
rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
||||
CORE_ADDR addr,
|
||||
struct target_ops *targ)
|
||||
{
|
||||
struct obj_section *s;
|
||||
|
||||
s = find_pc_section (addr);
|
||||
if (s && s->the_bfd_section->flags & SEC_CODE)
|
||||
return addr;
|
||||
|
||||
/* ADDR is in the data space, so it's a special function pointer. */
|
||||
return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
|
||||
}
|
||||
|
||||
|
||||
/* Handling the various POWER/PowerPC variants. */
|
||||
|
||||
@ -3022,7 +2442,7 @@ rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||||
|
||||
if (!fdata.frameless)
|
||||
/* Frameless really means stackless. */
|
||||
cache->base = read_memory_addr (cache->base, wordsize);
|
||||
cache->base = read_memory_unsigned_integer (cache->base, wordsize);
|
||||
|
||||
trad_frame_set_value (cache->saved_regs,
|
||||
gdbarch_sp_regnum (gdbarch), cache->base);
|
||||
@ -3251,7 +2671,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||||
enum bfd_architecture arch;
|
||||
unsigned long mach;
|
||||
bfd abfd;
|
||||
int sysv_abi;
|
||||
asection *sect;
|
||||
enum auto_boolean soft_float_flag = powerpc_soft_float_global;
|
||||
int soft_float;
|
||||
@ -3268,8 +2687,6 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||||
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
|
||||
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
||||
|
||||
sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
||||
|
||||
/* Check word size. If INFO is from a binary file, infer it from
|
||||
that, else choose a likely default. */
|
||||
if (from_xcoff_exec)
|
||||
@ -3657,20 +3074,16 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||||
alias. */
|
||||
set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
|
||||
|
||||
if (sysv_abi && wordsize == 8)
|
||||
if (wordsize == 8)
|
||||
set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
|
||||
else if (sysv_abi && wordsize == 4)
|
||||
set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
|
||||
else
|
||||
set_gdbarch_return_value (gdbarch, rs6000_return_value);
|
||||
set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
|
||||
|
||||
/* Set lr_frame_offset. */
|
||||
if (wordsize == 8)
|
||||
tdep->lr_frame_offset = 16;
|
||||
else if (sysv_abi)
|
||||
tdep->lr_frame_offset = 4;
|
||||
else
|
||||
tdep->lr_frame_offset = 8;
|
||||
tdep->lr_frame_offset = 4;
|
||||
|
||||
if (have_spe || have_dfp)
|
||||
{
|
||||
@ -3702,22 +3115,13 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||||
if (sysv_abi)
|
||||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
||||
else
|
||||
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
||||
set_gdbarch_char_signed (gdbarch, 0);
|
||||
|
||||
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
|
||||
if (sysv_abi && wordsize == 8)
|
||||
if (wordsize == 8)
|
||||
/* PPC64 SYSV. */
|
||||
set_gdbarch_frame_red_zone_size (gdbarch, 288);
|
||||
else if (!sysv_abi && wordsize == 4)
|
||||
/* PowerOpen / AIX 32 bit. The saved area or red zone consists of
|
||||
19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
|
||||
Problem is, 220 isn't frame (16 byte) aligned. Round it up to
|
||||
224. */
|
||||
set_gdbarch_frame_red_zone_size (gdbarch, 224);
|
||||
|
||||
set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
|
||||
set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
|
||||
@ -3726,12 +3130,10 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||||
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
|
||||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
|
||||
|
||||
if (sysv_abi && wordsize == 4)
|
||||
if (wordsize == 4)
|
||||
set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
|
||||
else if (sysv_abi && wordsize == 8)
|
||||
else if (wordsize == 8)
|
||||
set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
|
||||
else
|
||||
set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
|
||||
|
||||
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
|
||||
set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
|
||||
@ -3744,28 +3146,11 @@ rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||||
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
|
||||
|
||||
/* Handles single stepping of atomic sequences. */
|
||||
set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
|
||||
set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
|
||||
|
||||
/* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
|
||||
for the descriptor and ".FN" for the entry-point -- a user
|
||||
specifying "break FN" will unexpectedly end up with a breakpoint
|
||||
on the descriptor and not the function. This architecture method
|
||||
transforms any breakpoints on descriptors into breakpoints on the
|
||||
corresponding entry point. */
|
||||
if (sysv_abi && wordsize == 8)
|
||||
set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
|
||||
|
||||
/* Not sure on this. FIXMEmgo */
|
||||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||||
|
||||
if (!sysv_abi)
|
||||
{
|
||||
/* Handle RS/6000 function pointers (which are really function
|
||||
descriptors). */
|
||||
set_gdbarch_convert_from_func_ptr_addr (gdbarch,
|
||||
rs6000_convert_from_func_ptr_addr);
|
||||
}
|
||||
|
||||
/* Helpers for function argument information. */
|
||||
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
|
||||
|
||||
|
@ -17,10 +17,10 @@
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
extern int rs6000_software_single_step (struct frame_info *frame);
|
||||
|
||||
/* Hook in rs6000-tdep.c for determining the TOC address when
|
||||
/* Hook in rs6000-aix-tdep.c for determining the TOC address when
|
||||
calling functions in the inferior. */
|
||||
|
||||
extern CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR);
|
||||
|
||||
/* Minimum possible text address in AIX. */
|
||||
#define AIX_TEXT_SEGMENT_BASE 0x10000000
|
||||
|
||||
|
Reference in New Issue
Block a user