* elf32-spu.c (insert_callee): Reorder call list so most recent

call is always first.
	(interesting_section): Move.
	(mark_functions_via_relocs): Fold interesting_section and
	reloc_count tests in callers to here.  Simplify output section
	owner test.
	(discover_functions): Set "gaps" when no symbols and some
	"interesting_section".  Run pasted_function loop for no symbol
	bfds.
	(for_each_node, transfer_calls): New functions.
	(mark_non_root): Adjust to suit for_each_node.
	(call_graph_traverse): Likewise.  Fix memory leak.  Rename to..
	(remove_cycles): ..this.
	(build_call_tree): Use for_each_node and transfer_calls.
	(struct _sum_stack_param): New.
	(sum_stack): Adjust to suit for_each_node.  Return error on
	malloc failure.  Move code to print root node cumulative stack from..
	(spu_elf_stack_analysis): ..here.  Use for_each_node.
This commit is contained in:
Alan Modra
2008-04-01 23:52:00 +00:00
parent 2fd0a91741
commit 055ed83b93
2 changed files with 229 additions and 200 deletions

View File

@ -1,3 +1,24 @@
2008-04-02 Alan Modra <amodra@bigpond.net.au>
* elf32-spu.c (insert_callee): Reorder call list so most recent
call is always first.
(interesting_section): Move.
(mark_functions_via_relocs): Fold interesting_section and
reloc_count tests in callers to here. Simplify output section
owner test.
(discover_functions): Set "gaps" when no symbols and some
"interesting_section". Run pasted_function loop for no symbol
bfds.
(for_each_node, transfer_calls): New functions.
(mark_non_root): Adjust to suit for_each_node.
(call_graph_traverse): Likewise. Fix memory leak. Rename to..
(remove_cycles): ..this.
(build_call_tree): Use for_each_node and transfer_calls.
(struct _sum_stack_param): New.
(sum_stack): Adjust to suit for_each_node. Return error on
malloc failure. Move code to print root node cumulative stack from..
(spu_elf_stack_analysis): ..here. Use for_each_node.
2008-03-31 Cary Coutant <ccoutant@google.com>
PR 6006

View File

@ -1923,8 +1923,9 @@ find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info)
static bfd_boolean
insert_callee (struct function_info *caller, struct call_info *callee)
{
struct call_info *p;
for (p = caller->call_list; p != NULL; p = p->next)
struct call_info **pp, *p;
for (pp = &caller->call_list; (p = *pp) != NULL; pp = &p->next)
if (p->fun == callee->fun)
{
/* Tail calls use less stack than normal calls. Retain entry
@ -1935,6 +1936,10 @@ insert_callee (struct function_info *caller, struct call_info *callee)
p->fun->start = NULL;
p->fun->is_func = TRUE;
}
/* Reorder list so most recent call is first. */
*pp = p->next;
p->next = caller->call_list;
caller->call_list = p;
return FALSE;
}
callee->next = caller->call_list;
@ -1942,6 +1947,19 @@ insert_callee (struct function_info *caller, struct call_info *callee)
return TRUE;
}
/* We're only interested in code sections. Testing SEC_IN_MEMORY excludes
overlay stub sections. */
static bfd_boolean
interesting_section (asection *s, bfd *obfd)
{
return (s->output_section != NULL
&& s->output_section->owner == obfd
&& ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_IN_MEMORY))
== (SEC_ALLOC | SEC_LOAD | SEC_CODE))
&& s->size != 0);
}
/* Rummage through the relocs for SEC, looking for function calls.
If CALL_TREE is true, fill in call graph. If CALL_TREE is false,
mark destination symbols on calls as being functions. Also
@ -1959,6 +1977,10 @@ mark_functions_via_relocs (asection *sec,
void *psyms;
static bfd_boolean warned;
if (!interesting_section (sec, info->output_bfd)
|| sec->reloc_count == 0)
return TRUE;
internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL,
info->keep_memory);
if (internal_relocs == NULL)
@ -1993,7 +2015,7 @@ mark_functions_via_relocs (asection *sec,
if (sym_sec == NULL
|| sym_sec->output_section == NULL
|| sym_sec->output_section->owner != sec->output_section->owner)
|| sym_sec->output_section->owner != info->output_bfd)
continue;
if (!bfd_get_section_contents (sec->owner, sec, insn,
@ -2144,19 +2166,6 @@ pasted_function (asection *sec, struct bfd_link_info *info)
return FALSE;
}
/* We're only interested in code sections. Testing SEC_IN_MEMORY excludes
overlay stub sections. */
static bfd_boolean
interesting_section (asection *s, bfd *obfd)
{
return (s->output_section != NULL
&& s->output_section->owner == obfd
&& ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_IN_MEMORY))
== (SEC_ALLOC | SEC_LOAD | SEC_CODE))
&& s->size != 0);
}
/* Map address ranges in code sections to functions. */
static bfd_boolean
@ -2198,7 +2207,16 @@ discover_functions (struct bfd_link_info *info)
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
if (symcount == 0)
continue;
{
if (!gaps)
for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
if (interesting_section (sec, info->output_bfd))
{
gaps = TRUE;
break;
}
continue;
}
syms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (syms == NULL)
@ -2286,12 +2304,8 @@ discover_functions (struct bfd_link_info *info)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
if (interesting_section (sec, info->output_bfd)
&& sec->reloc_count != 0)
{
if (!mark_functions_via_relocs (sec, info, FALSE))
return FALSE;
}
if (!mark_functions_via_relocs (sec, info, FALSE))
return FALSE;
}
for (ibfd = info->input_bfds, bfd_idx = 0;
@ -2333,6 +2347,15 @@ discover_functions (struct bfd_link_info *info)
return FALSE;
}
}
}
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
/* Some of the symbols we've installed as marking the
beginning of functions may have a size of zero. Extend
@ -2382,26 +2405,100 @@ discover_functions (struct bfd_link_info *info)
return TRUE;
}
/* Iterate over all function_info we have collected, calling DOIT on
each node if ROOT_ONLY is false. Only call DOIT on root nodes
if ROOT_ONLY. */
static bfd_boolean
for_each_node (bfd_boolean (*doit) (struct function_info *,
struct bfd_link_info *,
void *),
struct bfd_link_info *info,
void *param,
int root_only)
{
bfd *ibfd;
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->u.i.stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
if (!root_only || !sinfo->fun[i].non_root)
if (!doit (&sinfo->fun[i], info, param))
return FALSE;
}
}
}
return TRUE;
}
/* Transfer call info attached to struct function_info entries for
all of a given function's sections to the first entry. */
static bfd_boolean
transfer_calls (struct function_info *fun,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
void *param ATTRIBUTE_UNUSED)
{
struct function_info *start = fun->start;
if (start != NULL)
{
struct call_info *call, *call_next;
while (start->start != NULL)
start = start->start;
for (call = fun->call_list; call != NULL; call = call_next)
{
call_next = call->next;
if (!insert_callee (start, call))
free (call);
}
fun->call_list = NULL;
}
return TRUE;
}
/* Mark nodes in the call graph that are called by some other node. */
static void
mark_non_root (struct function_info *fun)
static bfd_boolean
mark_non_root (struct function_info *fun,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
void *param ATTRIBUTE_UNUSED)
{
struct call_info *call;
if (fun->visit1)
return TRUE;
fun->visit1 = TRUE;
for (call = fun->call_list; call; call = call->next)
{
call->fun->non_root = TRUE;
if (!call->fun->visit1)
mark_non_root (call->fun);
mark_non_root (call->fun, 0, 0);
}
return TRUE;
}
/* Remove cycles from the call graph. */
static void
call_graph_traverse (struct function_info *fun, struct bfd_link_info *info)
static bfd_boolean
remove_cycles (struct function_info *fun,
struct bfd_link_info *info,
void *param ATTRIBUTE_UNUSED)
{
struct call_info **callp, *call;
@ -2412,7 +2509,10 @@ call_graph_traverse (struct function_info *fun, struct bfd_link_info *info)
while ((call = *callp) != NULL)
{
if (!call->fun->visit2)
call_graph_traverse (call->fun, info);
{
if (!remove_cycles (call->fun, info, 0))
return FALSE;
}
else if (call->fun->marking)
{
const char *f1 = func_name (fun);
@ -2422,11 +2522,13 @@ call_graph_traverse (struct function_info *fun, struct bfd_link_info *info)
"from %s to %s\n"),
f1, f2);
*callp = call->next;
free (call);
continue;
}
callp = &call->next;
}
fun->marking = FALSE;
return TRUE;
}
/* Populate call_list for each function. */
@ -2445,140 +2547,81 @@ build_call_tree (struct bfd_link_info *info)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
if (!interesting_section (sec, info->output_bfd)
|| sec->reloc_count == 0)
continue;
if (!mark_functions_via_relocs (sec, info, TRUE))
return FALSE;
}
/* Transfer call info from hot/cold section part of function
to main entry. */
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->u.i.stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
{
struct function_info *start = sinfo->fun[i].start;
if (start != NULL)
{
struct call_info *call;
while (start->start != NULL)
start = start->start;
call = sinfo->fun[i].call_list;
while (call != NULL)
{
struct call_info *call_next = call->next;
if (!insert_callee (start, call))
free (call);
call = call_next;
}
sinfo->fun[i].call_list = NULL;
sinfo->fun[i].non_root = TRUE;
}
}
}
}
if (!mark_functions_via_relocs (sec, info, TRUE))
return FALSE;
}
/* Transfer call info from hot/cold section part of function
to main entry. */
if (!for_each_node (transfer_calls, info, 0, FALSE))
return FALSE;
/* Find the call graph root(s). */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->u.i.stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
if (!sinfo->fun[i].visit1)
mark_non_root (&sinfo->fun[i]);
}
}
}
if (!for_each_node (mark_non_root, info, 0, FALSE))
return FALSE;
/* Remove cycles from the call graph. We start from the root node(s)
so that we break cycles in a reasonable place. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->u.i.stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
if (!sinfo->fun[i].non_root)
call_graph_traverse (&sinfo->fun[i], info);
}
}
}
return TRUE;
return for_each_node (remove_cycles, info, 0, TRUE);
}
struct _sum_stack_param {
size_t cum_stack;
size_t overall_stack;
bfd_boolean emit_stack_syms;
};
/* Descend the call graph for FUN, accumulating total stack required. */
static bfd_vma
static bfd_boolean
sum_stack (struct function_info *fun,
struct bfd_link_info *info,
int emit_stack_syms)
void *param)
{
struct call_info *call;
struct function_info *max = NULL;
bfd_vma max_stack = fun->stack;
bfd_vma stack;
struct function_info *max;
size_t stack, cum_stack;
const char *f1;
struct _sum_stack_param *sum_stack_param = param;
cum_stack = fun->stack;
sum_stack_param->cum_stack = cum_stack;
if (fun->visit3)
return max_stack;
return TRUE;
max = NULL;
for (call = fun->call_list; call; call = call->next)
{
stack = sum_stack (call->fun, info, emit_stack_syms);
if (!sum_stack (call->fun, info, sum_stack_param))
return FALSE;
stack = sum_stack_param->cum_stack;
/* Include caller stack for normal calls, don't do so for
tail calls. fun->stack here is local stack usage for
this function. */
if (!call->is_tail)
stack += fun->stack;
if (max_stack < stack)
if (cum_stack < stack)
{
max_stack = stack;
cum_stack = stack;
max = call->fun;
}
}
sum_stack_param->cum_stack = cum_stack;
stack = fun->stack;
/* Now fun->stack holds cumulative stack. */
fun->stack = cum_stack;
fun->visit3 = TRUE;
if (!fun->non_root
&& sum_stack_param->overall_stack < cum_stack)
sum_stack_param->overall_stack = cum_stack;
f1 = func_name (fun);
if (!fun->non_root)
info->callbacks->info (_(" %s: 0x%v\n"), f1, (bfd_vma) cum_stack);
info->callbacks->minfo (_("%s: 0x%v 0x%v\n"),
f1, (bfd_vma) fun->stack, max_stack);
f1, (bfd_vma) stack, (bfd_vma) cum_stack);
if (fun->call_list)
{
@ -2593,45 +2636,41 @@ sum_stack (struct function_info *fun,
}
}
/* Now fun->stack holds cumulative stack. */
fun->stack = max_stack;
fun->visit3 = TRUE;
if (emit_stack_syms)
if (sum_stack_param->emit_stack_syms)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
char *name = bfd_malloc (18 + strlen (f1));
struct elf_link_hash_entry *h;
if (name != NULL)
{
if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL)
sprintf (name, "__stack_%s", f1);
else
sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1);
if (name == NULL)
return FALSE;
h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
free (name);
if (h != NULL
&& (h->root.type == bfd_link_hash_new
|| h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak))
{
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = bfd_abs_section_ptr;
h->root.u.def.value = max_stack;
h->size = 0;
h->type = 0;
h->ref_regular = 1;
h->def_regular = 1;
h->ref_regular_nonweak = 1;
h->forced_local = 1;
h->non_elf = 0;
}
if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL)
sprintf (name, "__stack_%s", f1);
else
sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1);
h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
free (name);
if (h != NULL
&& (h->root.type == bfd_link_hash_new
|| h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak))
{
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = bfd_abs_section_ptr;
h->root.u.def.value = cum_stack;
h->size = 0;
h->type = 0;
h->ref_regular = 1;
h->def_regular = 1;
h->ref_regular_nonweak = 1;
h->forced_local = 1;
h->non_elf = 0;
}
}
return max_stack;
return TRUE;
}
/* Provide an estimate of total stack required. */
@ -2639,8 +2678,7 @@ sum_stack (struct function_info *fun,
static bfd_boolean
spu_elf_stack_analysis (struct bfd_link_info *info, int emit_stack_syms)
{
bfd *ibfd;
bfd_vma max_stack = 0;
struct _sum_stack_param sum_stack_param;
if (!discover_functions (info))
return FALSE;
@ -2651,44 +2689,14 @@ spu_elf_stack_analysis (struct bfd_link_info *info, int emit_stack_syms)
info->callbacks->info (_("Stack size for call graph root nodes.\n"));
info->callbacks->minfo (_("\nStack size for functions. "
"Annotations: '*' max stack, 't' tail call\n"));
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
sum_stack_param.emit_stack_syms = emit_stack_syms;
sum_stack_param.overall_stack = 0;
if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE))
return FALSE;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->u.i.stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
{
if (!sinfo->fun[i].non_root)
{
bfd_vma stack;
const char *f1;
stack = sum_stack (&sinfo->fun[i], info,
emit_stack_syms);
f1 = func_name (&sinfo->fun[i]);
info->callbacks->info (_(" %s: 0x%v\n"),
f1, stack);
if (max_stack < stack)
max_stack = stack;
}
}
}
}
}
info->callbacks->info (_("Maximum stack required is 0x%v\n"), max_stack);
info->callbacks->info (_("Maximum stack required is 0x%v\n"),
(bfd_vma) sum_stack_param.overall_stack);
return TRUE;
}