Merge branch 'feature/update_wifi_provisioning_from_idf' into 'master'

feat(provisioning): update wifi provisioning from idf

See merge request sdk/ESP8266_RTOS_SDK!1501
This commit is contained in:
Dong Heng
2020-08-26 11:36:43 +08:00
63 changed files with 5608 additions and 542 deletions

View File

@ -1,10 +1,23 @@
set(COMPONENT_ADD_INCLUDEDIRS include)
set(COMPONENT_PRIV_INCLUDEDIRS proto-c ../protocomm/proto-c)
set(COMPONENT_SRCS "src/wifi_config.c"
"proto-c/wifi_config.pb-c.c"
"proto-c/wifi_constants.pb-c.c")
if(CONFIG_ENABLE_UNIFIED_PROVISIONING)
set(srcs "src/wifi_config.c"
"src/wifi_scan.c"
"src/manager.c"
"src/handlers.c"
"src/scheme_softap.c"
"proto-c/wifi_config.pb-c.c"
"proto-c/wifi_scan.pb-c.c"
"proto-c/wifi_constants.pb-c.c")
endif()
set(COMPONENT_REQUIRES lwip)
set(COMPONENT_PRIV_REQUIRES protobuf-c protocomm)
idf_component_register(SRCS "${srcs}"
INCLUDE_DIRS include
PRIV_INCLUDE_DIRS src proto-c ../protocomm/proto-c
REQUIRES lwip protocomm
PRIV_REQUIRES protobuf-c mdns json)
# To avoid warning for strncpy
set_source_files_properties(src/handlers.c src/scheme_softap.c
PROPERTIES COMPILE_FLAGS
-Wno-stringop-truncation
)
register_component()

View File

@ -1,10 +1,27 @@
menu "Unified Provisioning"
menu "Wi-Fi Provisioning Manager"
config ENABLE_UNIFIED_PROVISIONING
bool "Enable Unified Provisioning"
default n
select ENABLE_MDNS
help
This enables Unified Provisioning feature along with required components like Wifi-Provisioning, Protocomm and their mbedtls dependencies.
config WIFI_PROV_SCAN_MAX_ENTRIES
int "Max Wi-Fi Scan Result Entries"
default 16
range 1 255
depends on ENABLE_UNIFIED_PROVISIONING
help
This sets the maximum number of entries of Wi-Fi scan results that will be kept by the provisioning manager
config WIFI_PROV_AUTOSTOP_TIMEOUT
int "Provisioning auto-stop timeout"
default 30
range 5 600
depends on ENABLE_UNIFIED_PROVISIONING
help
Time (in seconds) after which the Wi-Fi provisioning manager will auto-stop after connecting to
a Wi-Fi network successfully.
config ENABLE_UNIFIED_PROVISIONING
bool "Enable Unified Provisioning"
default n
select MBEDTLS_CIPHER_MODE_CTR
select MBEDTLS_ECP_C
help
This enables Unified Provisioning feature along with required components like Wifi-Provisioning, Protocomm and their mbedtls dependencies.
endmenu

View File

@ -4,5 +4,8 @@ COMPONENT_ADD_INCLUDEDIRS :=
ifdef CONFIG_ENABLE_UNIFIED_PROVISIONING
COMPONENT_SRCDIRS := src proto-c
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_PRIV_INCLUDEDIRS := proto-c ../protocomm/proto-c/
COMPONENT_PRIV_INCLUDEDIRS := src proto-c ../protocomm/proto-c/
# To avoid warning for strncpy in "handlers.c" and "scheme_softap.c"
CPPFLAGS += -Wno-stringop-truncation
endif

View File

@ -0,0 +1,558 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <protocomm.h>
#include "esp_event.h"
#include "wifi_provisioning/wifi_config.h"
#ifdef __cplusplus
extern "C" {
#endif
ESP_EVENT_DECLARE_BASE(WIFI_PROV_EVENT);
/**
* @brief Events generated by manager
*
* These events are generated in order of declaration and, for the
* stretch of time between initialization and de-initialization of
* the manager, each event is signaled only once
*/
typedef enum {
/**
* Emitted when the manager is initialized
*/
WIFI_PROV_INIT,
/**
* Indicates that provisioning has started
*/
WIFI_PROV_START,
/**
* Emitted when Wi-Fi AP credentials are received via `protocomm`
* endpoint `wifi_config`. The event data in this case is a pointer
* to the corresponding `wifi_sta_config_t` structure
*/
WIFI_PROV_CRED_RECV,
/**
* Emitted when device fails to connect to the AP of which the
* credentials were received earlier on event `WIFI_PROV_CRED_RECV`.
* The event data in this case is a pointer to the disconnection
* reason code with type `wifi_prov_sta_fail_reason_t`
*/
WIFI_PROV_CRED_FAIL,
/**
* Emitted when device successfully connects to the AP of which the
* credentials were received earlier on event `WIFI_PROV_CRED_RECV`
*/
WIFI_PROV_CRED_SUCCESS,
/**
* Signals that provisioning service has stopped
*/
WIFI_PROV_END,
/**
* Signals that manager has been de-initialized
*/
WIFI_PROV_DEINIT,
} wifi_prov_cb_event_t;
typedef void (*wifi_prov_cb_func_t)(void *user_data, wifi_prov_cb_event_t event, void *event_data);
/**
* @brief Event handler that is used by the manager while
* provisioning service is active
*/
typedef struct {
/**
* Callback function to be executed on provisioning events
*/
wifi_prov_cb_func_t event_cb;
/**
* User context data to pass as parameter to callback function
*/
void *user_data;
} wifi_prov_event_handler_t;
/**
* @brief Event handler can be set to none if not used
*/
#define WIFI_PROV_EVENT_HANDLER_NONE { \
.event_cb = NULL, \
.user_data = NULL \
}
/**
* @brief Structure for specifying the provisioning scheme to be
* followed by the manager
*
* @note Ready to use schemes are available:
* - wifi_prov_scheme_ble : for provisioning over BLE transport + GATT server
* - wifi_prov_scheme_softap : for provisioning over SoftAP transport + HTTP server
* - wifi_prov_scheme_console : for provisioning over Serial UART transport + Console (for debugging)
*/
typedef struct wifi_prov_scheme {
/**
* Function which is to be called by the manager when it is to
* start the provisioning service associated with a protocomm instance
* and a scheme specific configuration
*/
esp_err_t (*prov_start) (protocomm_t *pc, void *config);
/**
* Function which is to be called by the manager to stop the
* provisioning service previously associated with a protocomm instance
*/
esp_err_t (*prov_stop) (protocomm_t *pc);
/**
* Function which is to be called by the manager to generate
* a new configuration for the provisioning service, that is
* to be passed to prov_start()
*/
void *(*new_config) (void);
/**
* Function which is to be called by the manager to delete a
* configuration generated using new_config()
*/
void (*delete_config) (void *config);
/**
* Function which is to be called by the manager to set the
* service name and key values in the configuration structure
*/
esp_err_t (*set_config_service) (void *config, const char *service_name, const char *service_key);
/**
* Function which is to be called by the manager to set a protocomm endpoint
* with an identifying name and UUID in the configuration structure
*/
esp_err_t (*set_config_endpoint) (void *config, const char *endpoint_name, uint16_t uuid);
/**
* Sets mode of operation of Wi-Fi during provisioning
* This is set to :
* - WIFI_MODE_APSTA for SoftAP transport
* - WIFI_MODE_STA for BLE transport
*/
wifi_mode_t wifi_mode;
} wifi_prov_scheme_t;
/**
* @brief Structure for specifying the manager configuration
*/
typedef struct {
/**
* Provisioning scheme to use. Following schemes are already available:
* - wifi_prov_scheme_ble : for provisioning over BLE transport + GATT server
* - wifi_prov_scheme_softap : for provisioning over SoftAP transport + HTTP server + mDNS (optional)
* - wifi_prov_scheme_console : for provisioning over Serial UART transport + Console (for debugging)
*/
wifi_prov_scheme_t scheme;
/**
* Event handler required by the scheme for incorporating scheme specific
* behavior while provisioning manager is running. Various options may be
* provided by the scheme for setting this field. Use WIFI_PROV_EVENT_HANDLER_NONE
* when not used. When using scheme wifi_prov_scheme_ble, the following
* options are available:
* - WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM
* - WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BLE
* - WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BT
*/
wifi_prov_event_handler_t scheme_event_handler;
/**
* Event handler that can be set for the purpose of incorporating application
* specific behavior. Use WIFI_PROV_EVENT_HANDLER_NONE when not used.
*/
wifi_prov_event_handler_t app_event_handler;
} wifi_prov_mgr_config_t;
/**
* @brief Security modes supported by the Provisioning Manager.
*
* These are same as the security modes provided by protocomm
*/
typedef enum wifi_prov_security {
/**
* No security (plain-text communication)
*/
WIFI_PROV_SECURITY_0 = 0,
/**
* This secure communication mode consists of
* X25519 key exchange
* + proof of possession (pop) based authentication
* + AES-CTR encryption
*/
WIFI_PROV_SECURITY_1
} wifi_prov_security_t;
/**
* @brief Initialize provisioning manager instance
*
* Configures the manager and allocates internal resources
*
* Configuration specifies the provisioning scheme (transport)
* and event handlers
*
* Event WIFI_PROV_INIT is emitted right after initialization
* is complete
*
* @param[in] config Configuration structure
*
* @return
* - ESP_OK : Success
* - ESP_FAIL : Fail
*/
esp_err_t wifi_prov_mgr_init(wifi_prov_mgr_config_t config);
/**
* @brief Stop provisioning (if running) and release
* resource used by the manager
*
* Event WIFI_PROV_DEINIT is emitted right after de-initialization
* is finished
*
* If provisioning service is still active when this API is called,
* it first stops the service, hence emitting WIFI_PROV_END, and
* then performs the de-initialization
*/
void wifi_prov_mgr_deinit(void);
/**
* @brief Checks if device is provisioned
*
* This checks if Wi-Fi credentials are present on the NVS
*
* The Wi-Fi credentials are assumed to be kept in the same
* NVS namespace as used by esp_wifi component
*
* If one were to call esp_wifi_set_config() directly instead
* of going through the provisioning process, this function will
* still yield true (i.e. device will be found to be provisioned)
*
* @note Calling wifi_prov_mgr_start_provisioning() automatically
* resets the provision state, irrespective of what the
* state was prior to making the call.
*
* @param[out] provisioned True if provisioned, else false
*
* @return
* - ESP_OK : Retrieved provision state successfully
* - ESP_FAIL : Wi-Fi not initialized
* - ESP_ERR_INVALID_ARG : Null argument supplied
* - ESP_ERR_INVALID_STATE : Manager not initialized
*/
esp_err_t wifi_prov_mgr_is_provisioned(bool *provisioned);
/**
* @brief Start provisioning service
*
* This starts the provisioning service according to the scheme
* configured at the time of initialization. For scheme :
* - wifi_prov_scheme_ble : This starts protocomm_ble, which internally initializes
* BLE transport and starts GATT server for handling
* provisioning requests
* - wifi_prov_scheme_softap : This activates SoftAP mode of Wi-Fi and starts
* protocomm_httpd, which internally starts an HTTP
* server for handling provisioning requests (If mDNS is
* active it also starts advertising service with type
* _esp_wifi_prov._tcp)
*
* Event WIFI_PROV_START is emitted right after provisioning starts without failure
*
* @note This API will start provisioning service even if device is found to be
* already provisioned, i.e. wifi_prov_mgr_is_provisioned() yields true
*
* @param[in] security Specify which protocomm security scheme to use :
* - WIFI_PROV_SECURITY_0 : For no security
* - WIFI_PROV_SECURITY_1 : x25519 secure handshake for session
* establishment followed by AES-CTR encryption of provisioning messages
* @param[in] pop Pointer to proof of possession string (NULL if not needed). This
* is relevant only for protocomm security 1, in which case it is used
* for authenticating secure session
* @param[in] service_name Unique name of the service. This translates to:
* - Wi-Fi SSID when provisioning mode is softAP
* - Device name when provisioning mode is BLE
* @param[in] service_key Key required by client to access the service (NULL if not needed).
* This translates to:
* - Wi-Fi password when provisioning mode is softAP
* - ignored when provisioning mode is BLE
*
* @return
* - ESP_OK : Provisioning started successfully
* - ESP_FAIL : Failed to start provisioning service
* - ESP_ERR_INVALID_STATE : Provisioning manager not initialized or already started
*/
esp_err_t wifi_prov_mgr_start_provisioning(wifi_prov_security_t security, const char *pop,
const char *service_name, const char *service_key);
/**
* @brief Stop provisioning service
*
* If provisioning service is active, this API will initiate a process to stop
* the service and return. Once the service actually stops, the event WIFI_PROV_END
* will be emitted.
*
* If wifi_prov_mgr_deinit() is called without calling this API first, it will
* automatically stop the provisioning service and emit the WIFI_PROV_END, followed
* by WIFI_PROV_DEINIT, before returning.
*
* This API will generally be used along with wifi_prov_mgr_disable_auto_stop()
* in the scenario when the main application has registered its own endpoints,
* and wishes that the provisioning service is stopped only when some protocomm
* command from the client side application is received.
*
* Calling this API inside an endpoint handler, with sufficient cleanup_delay,
* will allow the response / acknowledgment to be sent successfully before the
* underlying protocomm service is stopped.
*
* Cleaup_delay is set when calling wifi_prov_mgr_disable_auto_stop().
* If not specified, it defaults to 1000ms.
*
* For straightforward cases, using this API is usually not necessary as
* provisioning is stopped automatically once WIFI_PROV_CRED_SUCCESS is emitted.
* Stopping is delayed (maximum 30 seconds) thus allowing the client side
* application to query for Wi-Fi state, i.e. after receiving the first query
* and sending `Wi-Fi state connected` response the service is stopped immediately.
*/
void wifi_prov_mgr_stop_provisioning(void);
/**
* @brief Wait for provisioning service to finish
*
* Calling this API will block until provisioning service is stopped
* i.e. till event WIFI_PROV_END is emitted.
*
* This will not block if provisioning is not started or not initialized.
*/
void wifi_prov_mgr_wait(void);
/**
* @brief Disable auto stopping of provisioning service upon completion
*
* By default, once provisioning is complete, the provisioning service is automatically
* stopped, and all endpoints (along with those registered by main application) are
* deactivated.
*
* This API is useful in the case when main application wishes to close provisioning service
* only after it receives some protocomm command from the client side app. For example, after
* connecting to Wi-Fi, the device may want to connect to the cloud, and only once that is
* successfully, the device is said to be fully configured. But, then it is upto the main
* application to explicitly call wifi_prov_mgr_stop_provisioning() later when the device is
* fully configured and the provisioning service is no longer required.
*
* @note This must be called before executing wifi_prov_mgr_start_provisioning()
*
* @param[in] cleanup_delay Sets the delay after which the actual cleanup of transport related
* resources is done after a call to wifi_prov_mgr_stop_provisioning()
* returns. Minimum allowed value is 100ms. If not specified, this will
* default to 1000ms.
*
* @return
* - ESP_OK : Success
* - ESP_ERR_INVALID_STATE : Manager not initialized or
* provisioning service already started
*/
esp_err_t wifi_prov_mgr_disable_auto_stop(uint32_t cleanup_delay);
/**
* @brief Set application version and capabilities in the JSON data returned by
* proto-ver endpoint
*
* This function can be called multiple times, to specify information about the various
* application specific services running on the device, identified by unique labels.
*
* The provisioning service itself registers an entry in the JSON data, by the label "prov",
* containing only provisioning service version and capabilities. Application services should
* use a label other than "prov" so as not to overwrite this.
*
* @note This must be called before executing wifi_prov_mgr_start_provisioning()
*
* @param[in] label String indicating the application name.
*
* @param[in] version String indicating the application version.
* There is no constraint on format.
*
* @param[in] capabilities Array of strings with capabilities.
* These could be used by the client side app to know
* the application registered endpoint capabilities
*
* @param[in] total_capabilities Size of capabilities array
*
* @return
* - ESP_OK : Success
* - ESP_ERR_INVALID_STATE : Manager not initialized or
* provisioning service already started
* - ESP_ERR_NO_MEM : Failed to allocate memory for version string
* - ESP_ERR_INVALID_ARG : Null argument
*/
esp_err_t wifi_prov_mgr_set_app_info(const char *label, const char *version,
const char**capabilities, size_t total_capabilities);
/**
* @brief Create an additional endpoint and allocate internal resources for it
*
* This API is to be called by the application if it wants to create an additional
* endpoint. All additional endpoints will be assigned UUIDs starting from 0xFF54
* and so on in the order of execution.
*
* protocomm handler for the created endpoint is to be registered later using
* wifi_prov_mgr_endpoint_register() after provisioning has started.
*
* @note This API can only be called BEFORE provisioning is started
*
* @note Additional endpoints can be used for configuring client provided
* parameters other than Wi-Fi credentials, that are necessary for the
* main application and hence must be set prior to starting the application
*
* @note After session establishment, the additional endpoints must be targeted
* first by the client side application before sending Wi-Fi configuration,
* because once Wi-Fi configuration finishes the provisioning service is
* stopped and hence all endpoints are unregistered
*
* @param[in] ep_name unique name of the endpoint
*
* @return
* - ESP_OK : Success
* - ESP_FAIL : Failure
*/
esp_err_t wifi_prov_mgr_endpoint_create(const char *ep_name);
/**
* @brief Register a handler for the previously created endpoint
*
* This API can be called by the application to register a protocomm handler
* to any endpoint that was created using wifi_prov_mgr_endpoint_create().
*
* @note This API can only be called AFTER provisioning has started
*
* @note Additional endpoints can be used for configuring client provided
* parameters other than Wi-Fi credentials, that are necessary for the
* main application and hence must be set prior to starting the application
*
* @note After session establishment, the additional endpoints must be targeted
* first by the client side application before sending Wi-Fi configuration,
* because once Wi-Fi configuration finishes the provisioning service is
* stopped and hence all endpoints are unregistered
*
* @param[in] ep_name Name of the endpoint
* @param[in] handler Endpoint handler function
* @param[in] user_ctx User data
*
* @return
* - ESP_OK : Success
* - ESP_FAIL : Failure
*/
esp_err_t wifi_prov_mgr_endpoint_register(const char *ep_name,
protocomm_req_handler_t handler,
void *user_ctx);
/**
* @brief Unregister the handler for an endpoint
*
* This API can be called if the application wants to selectively
* unregister the handler of an endpoint while the provisioning
* is still in progress.
*
* All the endpoint handlers are unregistered automatically when
* the provisioning stops.
*
* @param[in] ep_name Name of the endpoint
*/
void wifi_prov_mgr_endpoint_unregister(const char *ep_name);
/**
* @brief Event handler for provisioning manager
*
* This is called from the main event handler and controls the
* provisioning manager's internal state machine depending on
* incoming Wi-Fi events
*
* @note : This function is DEPRECATED, because events are now
* handled internally using the event loop library, esp_event.
* Calling this will do nothing and simply return ESP_OK.
*
* @param[in] ctx Event context data
* @param[in] event Event info
*
* @return
* - ESP_OK : Event handled successfully
*/
esp_err_t wifi_prov_mgr_event_handler(void *ctx, system_event_t *event) __attribute__ ((deprecated));
/**
* @brief Get state of Wi-Fi Station during provisioning
*
* @param[out] state Pointer to wifi_prov_sta_state_t
* variable to be filled
*
* @return
* - ESP_OK : Successfully retrieved Wi-Fi state
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t wifi_prov_mgr_get_wifi_state(wifi_prov_sta_state_t *state);
/**
* @brief Get reason code in case of Wi-Fi station
* disconnection during provisioning
*
* @param[out] reason Pointer to wifi_prov_sta_fail_reason_t
* variable to be filled
*
* @return
* - ESP_OK : Successfully retrieved Wi-Fi disconnect reason
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t wifi_prov_mgr_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t *reason);
/**
* @brief Runs Wi-Fi as Station with the supplied configuration
*
* Configures the Wi-Fi station mode to connect to the AP with
* SSID and password specified in config structure and sets
* Wi-Fi to run as station.
*
* This is automatically called by provisioning service upon
* receiving new credentials.
*
* If credentials are to be supplied to the manager via a
* different mode other than through protocomm, then this
* API needs to be called.
*
* Event WIFI_PROV_CRED_RECV is emitted after credentials have
* been applied and Wi-Fi station started
*
* @param[in] wifi_cfg Pointer to Wi-Fi configuration structure
*
* @return
* - ESP_OK : Wi-Fi configured and started successfully
* - ESP_FAIL : Failed to set configuration
*/
esp_err_t wifi_prov_mgr_configure_sta(wifi_config_t *wifi_cfg);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,47 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <protocomm.h>
#include <protocomm_httpd.h>
#include "wifi_provisioning/manager.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Scheme that can be used by manager for provisioning
* over SoftAP transport with HTTP server
*/
extern const wifi_prov_scheme_t wifi_prov_scheme_softap;
/**
*
* @brief Provide HTTPD Server handle externally.
*
* Useful in cases wherein applications need the webserver for some
* different operations, and do not want the wifi provisioning component
* to start/stop a new instance.
*
* @note This API should be called before wifi_prov_mgr_start_provisioning()
*
* @param[in] handle Handle to HTTPD server instance
*/
void wifi_prov_scheme_softap_set_httpd_handle(void *handle);
#ifdef __cplusplus
}
#endif

View File

@ -16,7 +16,7 @@
#define _WIFI_PROV_CONFIG_H_
#include <lwip/inet.h>
#include <stdlib.h>
#ifdef __cplusplus
extern "C" {
#endif
@ -76,7 +76,7 @@ typedef struct {
*/
typedef struct {
char ssid[33]; /*!< SSID of the AP to which the slave is to be connected */
char password[65]; /*!< Password of the AP */
char password[64]; /*!< Password of the AP */
char bssid[6]; /*!< BSSID of the AP */
uint8_t channel; /*!< Channel of the AP */
} wifi_prov_config_set_data_t;

View File

@ -0,0 +1,166 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _PROV_WIFI_SCAN_H_
#define _PROV_WIFI_SCAN_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <esp_wifi.h>
#define WIFI_SSID_LEN sizeof(((wifi_ap_record_t *)0)->ssid)
#define WIFI_BSSID_LEN sizeof(((wifi_ap_record_t *)0)->bssid)
/**
* @brief Type of context data passed to each get/set/apply handler
* function set in `wifi_prov_scan_handlers` structure.
*
* This is passed as an opaque pointer, thereby allowing it be defined
* later in application code as per requirements.
*/
typedef struct wifi_prov_scan_ctx wifi_prov_scan_ctx_t;
/**
* @brief Structure of entries in the scan results list
*/
typedef struct {
/**
* SSID of Wi-Fi AP
*/
char ssid[WIFI_SSID_LEN];
/**
* BSSID of Wi-Fi AP
*/
char bssid[WIFI_BSSID_LEN];
/**
* Wi-Fi channel number
*/
uint8_t channel;
/**
* Signal strength
*/
int rssi;
/**
* Wi-Fi security mode
*/
uint8_t auth;
} wifi_prov_scan_result_t;
/**
* @brief Internal handlers for receiving and responding to protocomm
* requests from client
*
* This is to be passed as priv_data for protocomm request handler
* (refer to `wifi_prov_scan_handler()`) when calling `protocomm_add_endpoint()`.
*/
typedef struct wifi_prov_scan_handlers {
/**
* Handler function called when scan start command is received
* with various scan parameters :
*
* blocking (input) - If true, the function should return only
* when the scanning is finished
*
* passive (input) - If true, scan is to be started in passive
* mode (this may be slower) instead of active mode
*
* group_channels (input) - This specifies whether to scan
* all channels in one go (when zero) or perform scanning of
* channels in groups, with 120ms delay between scanning of
* consecutive groups, and the value of this parameter sets the
* number of channels in each group. This is useful when transport
* mode is SoftAP, where scanning all channels in one go may not
* give the Wi-Fi driver enough time to send out beacons, and
* hence may cause disconnection with any connected stations.
* When scanning in groups, the manager will wait for atleast
* 120ms after completing scan on a group of channels, and thus
* allow the driver to send out the beacons. For example, given
* that the total number of Wi-Fi channels is 14, then setting
* group_channels to 4, will create 5 groups, with each group
* having 3 channels, except the last one which will have
* 14 % 3 = 2 channels. So, when scan is started, the first 3
* channels will be scanned, followed by a 120ms delay, and then
* the next 3 channels, and so on, until all the 14 channels have
* been scanned. One may need to adjust this parameter as having
* only few channels in a group may slow down the overall scan
* time, while having too many may again cause disconnection.
* Usually a value of 4 should work for most cases. Note that
* for any other mode of transport, e.g. BLE, this can be safely
* set to 0, and hence achieve the fastest overall scanning time.
*
* period_ms (input) - Scan parameter specifying how long to
* wait on each channel (in milli-seconds)
*/
esp_err_t (*scan_start)(bool blocking, bool passive,
uint8_t group_channels, uint32_t period_ms,
wifi_prov_scan_ctx_t **ctx);
/**
* Handler function called when scan status is requested. Status
* is given the parameters :
*
* scan_finished (output) - When scan has finished this returns true
*
* result_count (output) - This gives the total number of results
* obtained till now. If scan is yet happening this number will
* keep on updating
*/
esp_err_t (*scan_status)(bool *scan_finished,
uint16_t *result_count,
wifi_prov_scan_ctx_t **ctx);
/**
* Handler function called when scan result is requested. Parameters :
*
* scan_result - For fetching scan results. This can be called even
* if scan is still on going
*
* start_index (input) - Starting index from where to fetch the
* entries from the results list
*
* count (input) - Number of entries to fetch from the starting index
*
* entries (output) - List of entries returned. Each entry consists
* of ssid, channel and rssi information
*/
esp_err_t (*scan_result)(uint16_t result_index,
wifi_prov_scan_result_t *result,
wifi_prov_scan_ctx_t **ctx);
/**
* Context pointer to be passed to above handler functions upon invocation
*/
wifi_prov_scan_ctx_t *ctx;
} wifi_prov_scan_handlers_t;
/**
* @brief Handler for sending on demand Wi-Fi scan results
*
* This is to be registered as the `prov-scan` endpoint handler
* (protocomm `protocomm_req_handler_t`) using `protocomm_add_endpoint()`
*/
esp_err_t wifi_prov_scan_handler(uint32_t session_id, const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen, void *priv_data);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,878 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: wifi_scan.proto */
/* Do not generate deprecated warnings for self */
#ifndef PROTOBUF_C__NO_DEPRECATED
#define PROTOBUF_C__NO_DEPRECATED
#endif
#include "wifi_scan.pb-c.h"
void cmd_scan_start__init
(CmdScanStart *message)
{
static const CmdScanStart init_value = CMD_SCAN_START__INIT;
*message = init_value;
}
size_t cmd_scan_start__get_packed_size
(const CmdScanStart *message)
{
assert(message->base.descriptor == &cmd_scan_start__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t cmd_scan_start__pack
(const CmdScanStart *message,
uint8_t *out)
{
assert(message->base.descriptor == &cmd_scan_start__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t cmd_scan_start__pack_to_buffer
(const CmdScanStart *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &cmd_scan_start__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
CmdScanStart *
cmd_scan_start__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (CmdScanStart *)
protobuf_c_message_unpack (&cmd_scan_start__descriptor,
allocator, len, data);
}
void cmd_scan_start__free_unpacked
(CmdScanStart *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &cmd_scan_start__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void resp_scan_start__init
(RespScanStart *message)
{
static const RespScanStart init_value = RESP_SCAN_START__INIT;
*message = init_value;
}
size_t resp_scan_start__get_packed_size
(const RespScanStart *message)
{
assert(message->base.descriptor == &resp_scan_start__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t resp_scan_start__pack
(const RespScanStart *message,
uint8_t *out)
{
assert(message->base.descriptor == &resp_scan_start__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t resp_scan_start__pack_to_buffer
(const RespScanStart *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &resp_scan_start__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
RespScanStart *
resp_scan_start__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (RespScanStart *)
protobuf_c_message_unpack (&resp_scan_start__descriptor,
allocator, len, data);
}
void resp_scan_start__free_unpacked
(RespScanStart *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &resp_scan_start__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void cmd_scan_status__init
(CmdScanStatus *message)
{
static const CmdScanStatus init_value = CMD_SCAN_STATUS__INIT;
*message = init_value;
}
size_t cmd_scan_status__get_packed_size
(const CmdScanStatus *message)
{
assert(message->base.descriptor == &cmd_scan_status__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t cmd_scan_status__pack
(const CmdScanStatus *message,
uint8_t *out)
{
assert(message->base.descriptor == &cmd_scan_status__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t cmd_scan_status__pack_to_buffer
(const CmdScanStatus *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &cmd_scan_status__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
CmdScanStatus *
cmd_scan_status__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (CmdScanStatus *)
protobuf_c_message_unpack (&cmd_scan_status__descriptor,
allocator, len, data);
}
void cmd_scan_status__free_unpacked
(CmdScanStatus *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &cmd_scan_status__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void resp_scan_status__init
(RespScanStatus *message)
{
static const RespScanStatus init_value = RESP_SCAN_STATUS__INIT;
*message = init_value;
}
size_t resp_scan_status__get_packed_size
(const RespScanStatus *message)
{
assert(message->base.descriptor == &resp_scan_status__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t resp_scan_status__pack
(const RespScanStatus *message,
uint8_t *out)
{
assert(message->base.descriptor == &resp_scan_status__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t resp_scan_status__pack_to_buffer
(const RespScanStatus *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &resp_scan_status__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
RespScanStatus *
resp_scan_status__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (RespScanStatus *)
protobuf_c_message_unpack (&resp_scan_status__descriptor,
allocator, len, data);
}
void resp_scan_status__free_unpacked
(RespScanStatus *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &resp_scan_status__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void cmd_scan_result__init
(CmdScanResult *message)
{
static const CmdScanResult init_value = CMD_SCAN_RESULT__INIT;
*message = init_value;
}
size_t cmd_scan_result__get_packed_size
(const CmdScanResult *message)
{
assert(message->base.descriptor == &cmd_scan_result__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t cmd_scan_result__pack
(const CmdScanResult *message,
uint8_t *out)
{
assert(message->base.descriptor == &cmd_scan_result__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t cmd_scan_result__pack_to_buffer
(const CmdScanResult *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &cmd_scan_result__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
CmdScanResult *
cmd_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (CmdScanResult *)
protobuf_c_message_unpack (&cmd_scan_result__descriptor,
allocator, len, data);
}
void cmd_scan_result__free_unpacked
(CmdScanResult *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &cmd_scan_result__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void wi_fi_scan_result__init
(WiFiScanResult *message)
{
static const WiFiScanResult init_value = WI_FI_SCAN_RESULT__INIT;
*message = init_value;
}
size_t wi_fi_scan_result__get_packed_size
(const WiFiScanResult *message)
{
assert(message->base.descriptor == &wi_fi_scan_result__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t wi_fi_scan_result__pack
(const WiFiScanResult *message,
uint8_t *out)
{
assert(message->base.descriptor == &wi_fi_scan_result__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t wi_fi_scan_result__pack_to_buffer
(const WiFiScanResult *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &wi_fi_scan_result__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
WiFiScanResult *
wi_fi_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (WiFiScanResult *)
protobuf_c_message_unpack (&wi_fi_scan_result__descriptor,
allocator, len, data);
}
void wi_fi_scan_result__free_unpacked
(WiFiScanResult *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &wi_fi_scan_result__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void resp_scan_result__init
(RespScanResult *message)
{
static const RespScanResult init_value = RESP_SCAN_RESULT__INIT;
*message = init_value;
}
size_t resp_scan_result__get_packed_size
(const RespScanResult *message)
{
assert(message->base.descriptor == &resp_scan_result__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t resp_scan_result__pack
(const RespScanResult *message,
uint8_t *out)
{
assert(message->base.descriptor == &resp_scan_result__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t resp_scan_result__pack_to_buffer
(const RespScanResult *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &resp_scan_result__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
RespScanResult *
resp_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (RespScanResult *)
protobuf_c_message_unpack (&resp_scan_result__descriptor,
allocator, len, data);
}
void resp_scan_result__free_unpacked
(RespScanResult *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &resp_scan_result__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void wi_fi_scan_payload__init
(WiFiScanPayload *message)
{
static const WiFiScanPayload init_value = WI_FI_SCAN_PAYLOAD__INIT;
*message = init_value;
}
size_t wi_fi_scan_payload__get_packed_size
(const WiFiScanPayload *message)
{
assert(message->base.descriptor == &wi_fi_scan_payload__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t wi_fi_scan_payload__pack
(const WiFiScanPayload *message,
uint8_t *out)
{
assert(message->base.descriptor == &wi_fi_scan_payload__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t wi_fi_scan_payload__pack_to_buffer
(const WiFiScanPayload *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &wi_fi_scan_payload__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
WiFiScanPayload *
wi_fi_scan_payload__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (WiFiScanPayload *)
protobuf_c_message_unpack (&wi_fi_scan_payload__descriptor,
allocator, len, data);
}
void wi_fi_scan_payload__free_unpacked
(WiFiScanPayload *message,
ProtobufCAllocator *allocator)
{
if(!message)
return;
assert(message->base.descriptor == &wi_fi_scan_payload__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
static const ProtobufCFieldDescriptor cmd_scan_start__field_descriptors[4] =
{
{
"blocking",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BOOL,
0, /* quantifier_offset */
offsetof(CmdScanStart, blocking),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"passive",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BOOL,
0, /* quantifier_offset */
offsetof(CmdScanStart, passive),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"group_channels",
3,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(CmdScanStart, group_channels),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"period_ms",
4,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(CmdScanStart, period_ms),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned cmd_scan_start__field_indices_by_name[] = {
0, /* field[0] = blocking */
2, /* field[2] = group_channels */
1, /* field[1] = passive */
3, /* field[3] = period_ms */
};
static const ProtobufCIntRange cmd_scan_start__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 4 }
};
const ProtobufCMessageDescriptor cmd_scan_start__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"CmdScanStart",
"CmdScanStart",
"CmdScanStart",
"",
sizeof(CmdScanStart),
4,
cmd_scan_start__field_descriptors,
cmd_scan_start__field_indices_by_name,
1, cmd_scan_start__number_ranges,
(ProtobufCMessageInit) cmd_scan_start__init,
NULL,NULL,NULL /* reserved[123] */
};
#define resp_scan_start__field_descriptors NULL
#define resp_scan_start__field_indices_by_name NULL
#define resp_scan_start__number_ranges NULL
const ProtobufCMessageDescriptor resp_scan_start__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"RespScanStart",
"RespScanStart",
"RespScanStart",
"",
sizeof(RespScanStart),
0,
resp_scan_start__field_descriptors,
resp_scan_start__field_indices_by_name,
0, resp_scan_start__number_ranges,
(ProtobufCMessageInit) resp_scan_start__init,
NULL,NULL,NULL /* reserved[123] */
};
#define cmd_scan_status__field_descriptors NULL
#define cmd_scan_status__field_indices_by_name NULL
#define cmd_scan_status__number_ranges NULL
const ProtobufCMessageDescriptor cmd_scan_status__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"CmdScanStatus",
"CmdScanStatus",
"CmdScanStatus",
"",
sizeof(CmdScanStatus),
0,
cmd_scan_status__field_descriptors,
cmd_scan_status__field_indices_by_name,
0, cmd_scan_status__number_ranges,
(ProtobufCMessageInit) cmd_scan_status__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor resp_scan_status__field_descriptors[2] =
{
{
"scan_finished",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BOOL,
0, /* quantifier_offset */
offsetof(RespScanStatus, scan_finished),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"result_count",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(RespScanStatus, result_count),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned resp_scan_status__field_indices_by_name[] = {
1, /* field[1] = result_count */
0, /* field[0] = scan_finished */
};
static const ProtobufCIntRange resp_scan_status__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 2 }
};
const ProtobufCMessageDescriptor resp_scan_status__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"RespScanStatus",
"RespScanStatus",
"RespScanStatus",
"",
sizeof(RespScanStatus),
2,
resp_scan_status__field_descriptors,
resp_scan_status__field_indices_by_name,
1, resp_scan_status__number_ranges,
(ProtobufCMessageInit) resp_scan_status__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor cmd_scan_result__field_descriptors[2] =
{
{
"start_index",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(CmdScanResult, start_index),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"count",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(CmdScanResult, count),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned cmd_scan_result__field_indices_by_name[] = {
1, /* field[1] = count */
0, /* field[0] = start_index */
};
static const ProtobufCIntRange cmd_scan_result__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 2 }
};
const ProtobufCMessageDescriptor cmd_scan_result__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"CmdScanResult",
"CmdScanResult",
"CmdScanResult",
"",
sizeof(CmdScanResult),
2,
cmd_scan_result__field_descriptors,
cmd_scan_result__field_indices_by_name,
1, cmd_scan_result__number_ranges,
(ProtobufCMessageInit) cmd_scan_result__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor wi_fi_scan_result__field_descriptors[5] =
{
{
"ssid",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BYTES,
0, /* quantifier_offset */
offsetof(WiFiScanResult, ssid),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"channel",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_UINT32,
0, /* quantifier_offset */
offsetof(WiFiScanResult, channel),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"rssi",
3,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_INT32,
0, /* quantifier_offset */
offsetof(WiFiScanResult, rssi),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"bssid",
4,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_BYTES,
0, /* quantifier_offset */
offsetof(WiFiScanResult, bssid),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"auth",
5,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_ENUM,
0, /* quantifier_offset */
offsetof(WiFiScanResult, auth),
&wifi_auth_mode__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned wi_fi_scan_result__field_indices_by_name[] = {
4, /* field[4] = auth */
3, /* field[3] = bssid */
1, /* field[1] = channel */
2, /* field[2] = rssi */
0, /* field[0] = ssid */
};
static const ProtobufCIntRange wi_fi_scan_result__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 5 }
};
const ProtobufCMessageDescriptor wi_fi_scan_result__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"WiFiScanResult",
"WiFiScanResult",
"WiFiScanResult",
"",
sizeof(WiFiScanResult),
5,
wi_fi_scan_result__field_descriptors,
wi_fi_scan_result__field_indices_by_name,
1, wi_fi_scan_result__number_ranges,
(ProtobufCMessageInit) wi_fi_scan_result__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor resp_scan_result__field_descriptors[1] =
{
{
"entries",
1,
PROTOBUF_C_LABEL_REPEATED,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(RespScanResult, n_entries),
offsetof(RespScanResult, entries),
&wi_fi_scan_result__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned resp_scan_result__field_indices_by_name[] = {
0, /* field[0] = entries */
};
static const ProtobufCIntRange resp_scan_result__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 1 }
};
const ProtobufCMessageDescriptor resp_scan_result__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"RespScanResult",
"RespScanResult",
"RespScanResult",
"",
sizeof(RespScanResult),
1,
resp_scan_result__field_descriptors,
resp_scan_result__field_indices_by_name,
1, resp_scan_result__number_ranges,
(ProtobufCMessageInit) resp_scan_result__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor wi_fi_scan_payload__field_descriptors[8] =
{
{
"msg",
1,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_ENUM,
0, /* quantifier_offset */
offsetof(WiFiScanPayload, msg),
&wi_fi_scan_msg_type__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"status",
2,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_ENUM,
0, /* quantifier_offset */
offsetof(WiFiScanPayload, status),
&status__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"cmd_scan_start",
10,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, cmd_scan_start),
&cmd_scan_start__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"resp_scan_start",
11,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, resp_scan_start),
&resp_scan_start__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"cmd_scan_status",
12,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, cmd_scan_status),
&cmd_scan_status__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"resp_scan_status",
13,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, resp_scan_status),
&resp_scan_status__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"cmd_scan_result",
14,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, cmd_scan_result),
&cmd_scan_result__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"resp_scan_result",
15,
PROTOBUF_C_LABEL_NONE,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(WiFiScanPayload, payload_case),
offsetof(WiFiScanPayload, resp_scan_result),
&resp_scan_result__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned wi_fi_scan_payload__field_indices_by_name[] = {
6, /* field[6] = cmd_scan_result */
2, /* field[2] = cmd_scan_start */
4, /* field[4] = cmd_scan_status */
0, /* field[0] = msg */
7, /* field[7] = resp_scan_result */
3, /* field[3] = resp_scan_start */
5, /* field[5] = resp_scan_status */
1, /* field[1] = status */
};
static const ProtobufCIntRange wi_fi_scan_payload__number_ranges[2 + 1] =
{
{ 1, 0 },
{ 10, 2 },
{ 0, 8 }
};
const ProtobufCMessageDescriptor wi_fi_scan_payload__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"WiFiScanPayload",
"WiFiScanPayload",
"WiFiScanPayload",
"",
sizeof(WiFiScanPayload),
8,
wi_fi_scan_payload__field_descriptors,
wi_fi_scan_payload__field_indices_by_name,
2, wi_fi_scan_payload__number_ranges,
(ProtobufCMessageInit) wi_fi_scan_payload__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCEnumValue wi_fi_scan_msg_type__enum_values_by_number[6] =
{
{ "TypeCmdScanStart", "WI_FI_SCAN_MSG_TYPE__TypeCmdScanStart", 0 },
{ "TypeRespScanStart", "WI_FI_SCAN_MSG_TYPE__TypeRespScanStart", 1 },
{ "TypeCmdScanStatus", "WI_FI_SCAN_MSG_TYPE__TypeCmdScanStatus", 2 },
{ "TypeRespScanStatus", "WI_FI_SCAN_MSG_TYPE__TypeRespScanStatus", 3 },
{ "TypeCmdScanResult", "WI_FI_SCAN_MSG_TYPE__TypeCmdScanResult", 4 },
{ "TypeRespScanResult", "WI_FI_SCAN_MSG_TYPE__TypeRespScanResult", 5 },
};
static const ProtobufCIntRange wi_fi_scan_msg_type__value_ranges[] = {
{0, 0},{0, 6}
};
static const ProtobufCEnumValueIndex wi_fi_scan_msg_type__enum_values_by_name[6] =
{
{ "TypeCmdScanResult", 4 },
{ "TypeCmdScanStart", 0 },
{ "TypeCmdScanStatus", 2 },
{ "TypeRespScanResult", 5 },
{ "TypeRespScanStart", 1 },
{ "TypeRespScanStatus", 3 },
};
const ProtobufCEnumDescriptor wi_fi_scan_msg_type__descriptor =
{
PROTOBUF_C__ENUM_DESCRIPTOR_MAGIC,
"WiFiScanMsgType",
"WiFiScanMsgType",
"WiFiScanMsgType",
"",
6,
wi_fi_scan_msg_type__enum_values_by_number,
6,
wi_fi_scan_msg_type__enum_values_by_name,
1,
wi_fi_scan_msg_type__value_ranges,
NULL,NULL,NULL,NULL /* reserved[1234] */
};

View File

@ -0,0 +1,350 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: wifi_scan.proto */
#ifndef PROTOBUF_C_wifi_5fscan_2eproto__INCLUDED
#define PROTOBUF_C_wifi_5fscan_2eproto__INCLUDED
#include <protobuf-c/protobuf-c.h>
PROTOBUF_C__BEGIN_DECLS
#if PROTOBUF_C_VERSION_NUMBER < 1003000
# error This file was generated by a newer version of protoc-c which is incompatible with your libprotobuf-c headers. Please update your headers.
#elif 1003001 < PROTOBUF_C_MIN_COMPILER_VERSION
# error This file was generated by an older version of protoc-c which is incompatible with your libprotobuf-c headers. Please regenerate this file with a newer version of protoc-c.
#endif
#include "constants.pb-c.h"
#include "wifi_constants.pb-c.h"
typedef struct _CmdScanStart CmdScanStart;
typedef struct _RespScanStart RespScanStart;
typedef struct _CmdScanStatus CmdScanStatus;
typedef struct _RespScanStatus RespScanStatus;
typedef struct _CmdScanResult CmdScanResult;
typedef struct _WiFiScanResult WiFiScanResult;
typedef struct _RespScanResult RespScanResult;
typedef struct _WiFiScanPayload WiFiScanPayload;
/* --- enums --- */
typedef enum _WiFiScanMsgType {
WI_FI_SCAN_MSG_TYPE__TypeCmdScanStart = 0,
WI_FI_SCAN_MSG_TYPE__TypeRespScanStart = 1,
WI_FI_SCAN_MSG_TYPE__TypeCmdScanStatus = 2,
WI_FI_SCAN_MSG_TYPE__TypeRespScanStatus = 3,
WI_FI_SCAN_MSG_TYPE__TypeCmdScanResult = 4,
WI_FI_SCAN_MSG_TYPE__TypeRespScanResult = 5
PROTOBUF_C__FORCE_ENUM_TO_BE_INT_SIZE(WI_FI_SCAN_MSG_TYPE)
} WiFiScanMsgType;
/* --- messages --- */
struct _CmdScanStart
{
ProtobufCMessage base;
protobuf_c_boolean blocking;
protobuf_c_boolean passive;
uint32_t group_channels;
uint32_t period_ms;
};
#define CMD_SCAN_START__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&cmd_scan_start__descriptor) \
, 0, 0, 0, 0 }
struct _RespScanStart
{
ProtobufCMessage base;
};
#define RESP_SCAN_START__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&resp_scan_start__descriptor) \
}
struct _CmdScanStatus
{
ProtobufCMessage base;
};
#define CMD_SCAN_STATUS__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&cmd_scan_status__descriptor) \
}
struct _RespScanStatus
{
ProtobufCMessage base;
protobuf_c_boolean scan_finished;
uint32_t result_count;
};
#define RESP_SCAN_STATUS__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&resp_scan_status__descriptor) \
, 0, 0 }
struct _CmdScanResult
{
ProtobufCMessage base;
uint32_t start_index;
uint32_t count;
};
#define CMD_SCAN_RESULT__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&cmd_scan_result__descriptor) \
, 0, 0 }
struct _WiFiScanResult
{
ProtobufCMessage base;
ProtobufCBinaryData ssid;
uint32_t channel;
int32_t rssi;
ProtobufCBinaryData bssid;
WifiAuthMode auth;
};
#define WI_FI_SCAN_RESULT__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&wi_fi_scan_result__descriptor) \
, {0,NULL}, 0, 0, {0,NULL}, WIFI_AUTH_MODE__Open }
struct _RespScanResult
{
ProtobufCMessage base;
size_t n_entries;
WiFiScanResult **entries;
};
#define RESP_SCAN_RESULT__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&resp_scan_result__descriptor) \
, 0,NULL }
typedef enum {
WI_FI_SCAN_PAYLOAD__PAYLOAD__NOT_SET = 0,
WI_FI_SCAN_PAYLOAD__PAYLOAD_CMD_SCAN_START = 10,
WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_START = 11,
WI_FI_SCAN_PAYLOAD__PAYLOAD_CMD_SCAN_STATUS = 12,
WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_STATUS = 13,
WI_FI_SCAN_PAYLOAD__PAYLOAD_CMD_SCAN_RESULT = 14,
WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_RESULT = 15
PROTOBUF_C__FORCE_ENUM_TO_BE_INT_SIZE(WI_FI_SCAN_PAYLOAD__PAYLOAD)
} WiFiScanPayload__PayloadCase;
struct _WiFiScanPayload
{
ProtobufCMessage base;
WiFiScanMsgType msg;
Status status;
WiFiScanPayload__PayloadCase payload_case;
union {
CmdScanStart *cmd_scan_start;
RespScanStart *resp_scan_start;
CmdScanStatus *cmd_scan_status;
RespScanStatus *resp_scan_status;
CmdScanResult *cmd_scan_result;
RespScanResult *resp_scan_result;
};
};
#define WI_FI_SCAN_PAYLOAD__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&wi_fi_scan_payload__descriptor) \
, WI_FI_SCAN_MSG_TYPE__TypeCmdScanStart, STATUS__Success, WI_FI_SCAN_PAYLOAD__PAYLOAD__NOT_SET, {0} }
/* CmdScanStart methods */
void cmd_scan_start__init
(CmdScanStart *message);
size_t cmd_scan_start__get_packed_size
(const CmdScanStart *message);
size_t cmd_scan_start__pack
(const CmdScanStart *message,
uint8_t *out);
size_t cmd_scan_start__pack_to_buffer
(const CmdScanStart *message,
ProtobufCBuffer *buffer);
CmdScanStart *
cmd_scan_start__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void cmd_scan_start__free_unpacked
(CmdScanStart *message,
ProtobufCAllocator *allocator);
/* RespScanStart methods */
void resp_scan_start__init
(RespScanStart *message);
size_t resp_scan_start__get_packed_size
(const RespScanStart *message);
size_t resp_scan_start__pack
(const RespScanStart *message,
uint8_t *out);
size_t resp_scan_start__pack_to_buffer
(const RespScanStart *message,
ProtobufCBuffer *buffer);
RespScanStart *
resp_scan_start__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void resp_scan_start__free_unpacked
(RespScanStart *message,
ProtobufCAllocator *allocator);
/* CmdScanStatus methods */
void cmd_scan_status__init
(CmdScanStatus *message);
size_t cmd_scan_status__get_packed_size
(const CmdScanStatus *message);
size_t cmd_scan_status__pack
(const CmdScanStatus *message,
uint8_t *out);
size_t cmd_scan_status__pack_to_buffer
(const CmdScanStatus *message,
ProtobufCBuffer *buffer);
CmdScanStatus *
cmd_scan_status__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void cmd_scan_status__free_unpacked
(CmdScanStatus *message,
ProtobufCAllocator *allocator);
/* RespScanStatus methods */
void resp_scan_status__init
(RespScanStatus *message);
size_t resp_scan_status__get_packed_size
(const RespScanStatus *message);
size_t resp_scan_status__pack
(const RespScanStatus *message,
uint8_t *out);
size_t resp_scan_status__pack_to_buffer
(const RespScanStatus *message,
ProtobufCBuffer *buffer);
RespScanStatus *
resp_scan_status__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void resp_scan_status__free_unpacked
(RespScanStatus *message,
ProtobufCAllocator *allocator);
/* CmdScanResult methods */
void cmd_scan_result__init
(CmdScanResult *message);
size_t cmd_scan_result__get_packed_size
(const CmdScanResult *message);
size_t cmd_scan_result__pack
(const CmdScanResult *message,
uint8_t *out);
size_t cmd_scan_result__pack_to_buffer
(const CmdScanResult *message,
ProtobufCBuffer *buffer);
CmdScanResult *
cmd_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void cmd_scan_result__free_unpacked
(CmdScanResult *message,
ProtobufCAllocator *allocator);
/* WiFiScanResult methods */
void wi_fi_scan_result__init
(WiFiScanResult *message);
size_t wi_fi_scan_result__get_packed_size
(const WiFiScanResult *message);
size_t wi_fi_scan_result__pack
(const WiFiScanResult *message,
uint8_t *out);
size_t wi_fi_scan_result__pack_to_buffer
(const WiFiScanResult *message,
ProtobufCBuffer *buffer);
WiFiScanResult *
wi_fi_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void wi_fi_scan_result__free_unpacked
(WiFiScanResult *message,
ProtobufCAllocator *allocator);
/* RespScanResult methods */
void resp_scan_result__init
(RespScanResult *message);
size_t resp_scan_result__get_packed_size
(const RespScanResult *message);
size_t resp_scan_result__pack
(const RespScanResult *message,
uint8_t *out);
size_t resp_scan_result__pack_to_buffer
(const RespScanResult *message,
ProtobufCBuffer *buffer);
RespScanResult *
resp_scan_result__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void resp_scan_result__free_unpacked
(RespScanResult *message,
ProtobufCAllocator *allocator);
/* WiFiScanPayload methods */
void wi_fi_scan_payload__init
(WiFiScanPayload *message);
size_t wi_fi_scan_payload__get_packed_size
(const WiFiScanPayload *message);
size_t wi_fi_scan_payload__pack
(const WiFiScanPayload *message,
uint8_t *out);
size_t wi_fi_scan_payload__pack_to_buffer
(const WiFiScanPayload *message,
ProtobufCBuffer *buffer);
WiFiScanPayload *
wi_fi_scan_payload__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void wi_fi_scan_payload__free_unpacked
(WiFiScanPayload *message,
ProtobufCAllocator *allocator);
/* --- per-message closures --- */
typedef void (*CmdScanStart_Closure)
(const CmdScanStart *message,
void *closure_data);
typedef void (*RespScanStart_Closure)
(const RespScanStart *message,
void *closure_data);
typedef void (*CmdScanStatus_Closure)
(const CmdScanStatus *message,
void *closure_data);
typedef void (*RespScanStatus_Closure)
(const RespScanStatus *message,
void *closure_data);
typedef void (*CmdScanResult_Closure)
(const CmdScanResult *message,
void *closure_data);
typedef void (*WiFiScanResult_Closure)
(const WiFiScanResult *message,
void *closure_data);
typedef void (*RespScanResult_Closure)
(const RespScanResult *message,
void *closure_data);
typedef void (*WiFiScanPayload_Closure)
(const WiFiScanPayload *message,
void *closure_data);
/* --- services --- */
/* --- descriptors --- */
extern const ProtobufCEnumDescriptor wi_fi_scan_msg_type__descriptor;
extern const ProtobufCMessageDescriptor cmd_scan_start__descriptor;
extern const ProtobufCMessageDescriptor resp_scan_start__descriptor;
extern const ProtobufCMessageDescriptor cmd_scan_status__descriptor;
extern const ProtobufCMessageDescriptor resp_scan_status__descriptor;
extern const ProtobufCMessageDescriptor cmd_scan_result__descriptor;
extern const ProtobufCMessageDescriptor wi_fi_scan_result__descriptor;
extern const ProtobufCMessageDescriptor resp_scan_result__descriptor;
extern const ProtobufCMessageDescriptor wi_fi_scan_payload__descriptor;
PROTOBUF_C__END_DECLS
#endif /* PROTOBUF_C_wifi_5fscan_2eproto__INCLUDED */

View File

@ -0,0 +1,29 @@
cmake_minimum_required(VERSION 3.5)
set(PROTO_COMPILER "protoc")
set(PROTO_C_COMPILER "protoc-c")
set(C_OUT_PATH "${CMAKE_CURRENT_LIST_DIR}/../proto-c")
set(PY_OUT_PATH "${CMAKE_CURRENT_LIST_DIR}/../python")
set(PROTOCOMM_INCL_PATH "${CMAKE_CURRENT_LIST_DIR}/../../protocomm/proto")
set(PROTO_SRCS "wifi_constants.proto"
"wifi_config.proto"
"wifi_scan.proto")
add_custom_target(c_proto
COMMAND ${PROTO_C_COMPILER} --c_out=${C_OUT_PATH} -I . -I ${PROTOCOMM_INCL_PATH} ${PROTO_SRCS}
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)
add_custom_target(python_proto
COMMAND ${PROTO_COMPILER} --python_out=${PY_OUT_PATH} -I . -I ${PROTOCOMM_INCL_PATH} ${PROTO_SRCS}
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)
add_custom_target(proto ALL
DEPENDS c_proto python_proto
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)

View File

@ -1,7 +1,28 @@
# Protobuf files for defining Wi-Fi config-data packet structures
# Protobuf files for defining Wi-Fi provisioning packet structures
`wifi_provisioning` uses Google Protobuf for language, transport and architecture agnostic protocol communication. These proto files define the protocomm packet structure, separated across multiple files:
* wifi_contants.proto - Defines the various enums for indicating state of Wi-Fi (connected / disconnect / connecting), diconnect reasons, auth modes, etc.
* wifi_config.proto - Defines Wi-Fi configuration structures and commands for setting credentials (SSID, passphrase, BSSID), applying credentials and getting connection state.
* wifi_scan.proto - Defines Wi-Fi scan commands and result structures
Note : These proto files are not automatically compiled during the build process.
Run "make" (Optional) to generate the respective C and Python files. The generated C files are used by protocomm itself to create, delete and manipulate transaction packets. The generated Python files can be used by python based applications for implementing client side interface to protocomm layer.
# Compilation
Compilation requires protoc (Protobuf Compiler) and protoc-c (Protobuf C Compiler) installed. Since the generated files are to remain the same, as long as the proto files are not modified, therefore the generated files are already available under "protocomm/proto-c" and "protocomm/python" directories, and thus running make (and installing the Protobuf compilers) is optional.
Compilation requires protoc (Protobuf Compiler) and protoc-c (Protobuf C Compiler) installed. Since the generated files are to remain the same, as long as the proto files are not modified, therefore the generated files are already available under `components/wifi_provisioning/proto-c` and `components/wifi_provisioning/python` directories, and thus running cmake / make (and installing the Protobuf compilers) is optional.
If using `cmake` follow the below steps. If using `make`, jump to Step 2 directly.
## Step 1 (Only for cmake)
When using cmake, first create a build directory and call cmake from inside:
```
mkdir build
cd build
cmake ..
```
## Step 2
Simply run `make` to generate the respective C and Python files. The newly created files will overwrite those under `components/wifi_provisioning/proto-c` and `components/wifi_provisioning/python`

View File

@ -0,0 +1,63 @@
syntax = "proto3";
import "constants.proto";
import "wifi_constants.proto";
message CmdScanStart {
bool blocking = 1;
bool passive = 2;
uint32 group_channels = 3;
uint32 period_ms = 4;
}
message RespScanStart {
}
message CmdScanStatus {
}
message RespScanStatus {
bool scan_finished = 1;
uint32 result_count = 2;
}
message CmdScanResult {
uint32 start_index = 1;
uint32 count = 2;
}
message WiFiScanResult {
bytes ssid = 1;
uint32 channel = 2;
int32 rssi = 3;
bytes bssid = 4;
WifiAuthMode auth = 5;
}
message RespScanResult {
repeated WiFiScanResult entries = 1;
}
enum WiFiScanMsgType {
TypeCmdScanStart = 0;
TypeRespScanStart = 1;
TypeCmdScanStatus = 2;
TypeRespScanStatus = 3;
TypeCmdScanResult = 4;
TypeRespScanResult = 5;
}
message WiFiScanPayload {
WiFiScanMsgType msg = 1;
Status status = 2;
oneof payload {
CmdScanStart cmd_scan_start = 10;
RespScanStart resp_scan_start = 11;
CmdScanStatus cmd_scan_status = 12;
RespScanStatus resp_scan_status = 13;
CmdScanResult cmd_scan_result = 14;
RespScanResult resp_scan_result = 15;
}
}

View File

@ -0,0 +1,522 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: wifi_scan.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))
from google.protobuf.internal import enum_type_wrapper
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
import constants_pb2 as constants__pb2
import wifi_constants_pb2 as wifi__constants__pb2
DESCRIPTOR = _descriptor.FileDescriptor(
name='wifi_scan.proto',
package='',
syntax='proto3',
serialized_options=None,
serialized_pb=_b('\n\x0fwifi_scan.proto\x1a\x0f\x63onstants.proto\x1a\x14wifi_constants.proto\"\\\n\x0c\x43mdScanStart\x12\x10\n\x08\x62locking\x18\x01 \x01(\x08\x12\x0f\n\x07passive\x18\x02 \x01(\x08\x12\x16\n\x0egroup_channels\x18\x03 \x01(\r\x12\x11\n\tperiod_ms\x18\x04 \x01(\r\"\x0f\n\rRespScanStart\"\x0f\n\rCmdScanStatus\"=\n\x0eRespScanStatus\x12\x15\n\rscan_finished\x18\x01 \x01(\x08\x12\x14\n\x0cresult_count\x18\x02 \x01(\r\"3\n\rCmdScanResult\x12\x13\n\x0bstart_index\x18\x01 \x01(\r\x12\r\n\x05\x63ount\x18\x02 \x01(\r\"i\n\x0eWiFiScanResult\x12\x0c\n\x04ssid\x18\x01 \x01(\x0c\x12\x0f\n\x07\x63hannel\x18\x02 \x01(\r\x12\x0c\n\x04rssi\x18\x03 \x01(\x05\x12\r\n\x05\x62ssid\x18\x04 \x01(\x0c\x12\x1b\n\x04\x61uth\x18\x05 \x01(\x0e\x32\r.WifiAuthMode\"2\n\x0eRespScanResult\x12 \n\x07\x65ntries\x18\x01 \x03(\x0b\x32\x0f.WiFiScanResult\"\xd8\x02\n\x0fWiFiScanPayload\x12\x1d\n\x03msg\x18\x01 \x01(\x0e\x32\x10.WiFiScanMsgType\x12\x17\n\x06status\x18\x02 \x01(\x0e\x32\x07.Status\x12\'\n\x0e\x63md_scan_start\x18\n \x01(\x0b\x32\r.CmdScanStartH\x00\x12)\n\x0fresp_scan_start\x18\x0b \x01(\x0b\x32\x0e.RespScanStartH\x00\x12)\n\x0f\x63md_scan_status\x18\x0c \x01(\x0b\x32\x0e.CmdScanStatusH\x00\x12+\n\x10resp_scan_status\x18\r \x01(\x0b\x32\x0f.RespScanStatusH\x00\x12)\n\x0f\x63md_scan_result\x18\x0e \x01(\x0b\x32\x0e.CmdScanResultH\x00\x12+\n\x10resp_scan_result\x18\x0f \x01(\x0b\x32\x0f.RespScanResultH\x00\x42\t\n\x07payload*\x9c\x01\n\x0fWiFiScanMsgType\x12\x14\n\x10TypeCmdScanStart\x10\x00\x12\x15\n\x11TypeRespScanStart\x10\x01\x12\x15\n\x11TypeCmdScanStatus\x10\x02\x12\x16\n\x12TypeRespScanStatus\x10\x03\x12\x15\n\x11TypeCmdScanResult\x10\x04\x12\x16\n\x12TypeRespScanResult\x10\x05\x62\x06proto3')
,
dependencies=[constants__pb2.DESCRIPTOR,wifi__constants__pb2.DESCRIPTOR,])
_WIFISCANMSGTYPE = _descriptor.EnumDescriptor(
name='WiFiScanMsgType',
full_name='WiFiScanMsgType',
filename=None,
file=DESCRIPTOR,
values=[
_descriptor.EnumValueDescriptor(
name='TypeCmdScanStart', index=0, number=0,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeRespScanStart', index=1, number=1,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeCmdScanStatus', index=2, number=2,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeRespScanStatus', index=3, number=3,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeCmdScanResult', index=4, number=4,
serialized_options=None,
type=None),
_descriptor.EnumValueDescriptor(
name='TypeRespScanResult', index=5, number=5,
serialized_options=None,
type=None),
],
containing_type=None,
serialized_options=None,
serialized_start=809,
serialized_end=965,
)
_sym_db.RegisterEnumDescriptor(_WIFISCANMSGTYPE)
WiFiScanMsgType = enum_type_wrapper.EnumTypeWrapper(_WIFISCANMSGTYPE)
TypeCmdScanStart = 0
TypeRespScanStart = 1
TypeCmdScanStatus = 2
TypeRespScanStatus = 3
TypeCmdScanResult = 4
TypeRespScanResult = 5
_CMDSCANSTART = _descriptor.Descriptor(
name='CmdScanStart',
full_name='CmdScanStart',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='blocking', full_name='CmdScanStart.blocking', index=0,
number=1, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='passive', full_name='CmdScanStart.passive', index=1,
number=2, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='group_channels', full_name='CmdScanStart.group_channels', index=2,
number=3, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='period_ms', full_name='CmdScanStart.period_ms', index=3,
number=4, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=58,
serialized_end=150,
)
_RESPSCANSTART = _descriptor.Descriptor(
name='RespScanStart',
full_name='RespScanStart',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=152,
serialized_end=167,
)
_CMDSCANSTATUS = _descriptor.Descriptor(
name='CmdScanStatus',
full_name='CmdScanStatus',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=169,
serialized_end=184,
)
_RESPSCANSTATUS = _descriptor.Descriptor(
name='RespScanStatus',
full_name='RespScanStatus',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='scan_finished', full_name='RespScanStatus.scan_finished', index=0,
number=1, type=8, cpp_type=7, label=1,
has_default_value=False, default_value=False,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='result_count', full_name='RespScanStatus.result_count', index=1,
number=2, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=186,
serialized_end=247,
)
_CMDSCANRESULT = _descriptor.Descriptor(
name='CmdScanResult',
full_name='CmdScanResult',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='start_index', full_name='CmdScanResult.start_index', index=0,
number=1, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='count', full_name='CmdScanResult.count', index=1,
number=2, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=249,
serialized_end=300,
)
_WIFISCANRESULT = _descriptor.Descriptor(
name='WiFiScanResult',
full_name='WiFiScanResult',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='ssid', full_name='WiFiScanResult.ssid', index=0,
number=1, type=12, cpp_type=9, label=1,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='channel', full_name='WiFiScanResult.channel', index=1,
number=2, type=13, cpp_type=3, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='rssi', full_name='WiFiScanResult.rssi', index=2,
number=3, type=5, cpp_type=1, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='bssid', full_name='WiFiScanResult.bssid', index=3,
number=4, type=12, cpp_type=9, label=1,
has_default_value=False, default_value=_b(""),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='auth', full_name='WiFiScanResult.auth', index=4,
number=5, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=302,
serialized_end=407,
)
_RESPSCANRESULT = _descriptor.Descriptor(
name='RespScanResult',
full_name='RespScanResult',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='entries', full_name='RespScanResult.entries', index=0,
number=1, type=11, cpp_type=10, label=3,
has_default_value=False, default_value=[],
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
],
serialized_start=409,
serialized_end=459,
)
_WIFISCANPAYLOAD = _descriptor.Descriptor(
name='WiFiScanPayload',
full_name='WiFiScanPayload',
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name='msg', full_name='WiFiScanPayload.msg', index=0,
number=1, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='status', full_name='WiFiScanPayload.status', index=1,
number=2, type=14, cpp_type=8, label=1,
has_default_value=False, default_value=0,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='cmd_scan_start', full_name='WiFiScanPayload.cmd_scan_start', index=2,
number=10, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='resp_scan_start', full_name='WiFiScanPayload.resp_scan_start', index=3,
number=11, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='cmd_scan_status', full_name='WiFiScanPayload.cmd_scan_status', index=4,
number=12, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='resp_scan_status', full_name='WiFiScanPayload.resp_scan_status', index=5,
number=13, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='cmd_scan_result', full_name='WiFiScanPayload.cmd_scan_result', index=6,
number=14, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='resp_scan_result', full_name='WiFiScanPayload.resp_scan_result', index=7,
number=15, type=11, cpp_type=10, label=1,
has_default_value=False, default_value=None,
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=None, file=DESCRIPTOR),
],
extensions=[
],
nested_types=[],
enum_types=[
],
serialized_options=None,
is_extendable=False,
syntax='proto3',
extension_ranges=[],
oneofs=[
_descriptor.OneofDescriptor(
name='payload', full_name='WiFiScanPayload.payload',
index=0, containing_type=None, fields=[]),
],
serialized_start=462,
serialized_end=806,
)
_WIFISCANRESULT.fields_by_name['auth'].enum_type = wifi__constants__pb2._WIFIAUTHMODE
_RESPSCANRESULT.fields_by_name['entries'].message_type = _WIFISCANRESULT
_WIFISCANPAYLOAD.fields_by_name['msg'].enum_type = _WIFISCANMSGTYPE
_WIFISCANPAYLOAD.fields_by_name['status'].enum_type = constants__pb2._STATUS
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_start'].message_type = _CMDSCANSTART
_WIFISCANPAYLOAD.fields_by_name['resp_scan_start'].message_type = _RESPSCANSTART
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_status'].message_type = _CMDSCANSTATUS
_WIFISCANPAYLOAD.fields_by_name['resp_scan_status'].message_type = _RESPSCANSTATUS
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_result'].message_type = _CMDSCANRESULT
_WIFISCANPAYLOAD.fields_by_name['resp_scan_result'].message_type = _RESPSCANRESULT
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_start'])
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_start'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['resp_scan_start'])
_WIFISCANPAYLOAD.fields_by_name['resp_scan_start'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_status'])
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_status'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['resp_scan_status'])
_WIFISCANPAYLOAD.fields_by_name['resp_scan_status'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_result'])
_WIFISCANPAYLOAD.fields_by_name['cmd_scan_result'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
_WIFISCANPAYLOAD.oneofs_by_name['payload'].fields.append(
_WIFISCANPAYLOAD.fields_by_name['resp_scan_result'])
_WIFISCANPAYLOAD.fields_by_name['resp_scan_result'].containing_oneof = _WIFISCANPAYLOAD.oneofs_by_name['payload']
DESCRIPTOR.message_types_by_name['CmdScanStart'] = _CMDSCANSTART
DESCRIPTOR.message_types_by_name['RespScanStart'] = _RESPSCANSTART
DESCRIPTOR.message_types_by_name['CmdScanStatus'] = _CMDSCANSTATUS
DESCRIPTOR.message_types_by_name['RespScanStatus'] = _RESPSCANSTATUS
DESCRIPTOR.message_types_by_name['CmdScanResult'] = _CMDSCANRESULT
DESCRIPTOR.message_types_by_name['WiFiScanResult'] = _WIFISCANRESULT
DESCRIPTOR.message_types_by_name['RespScanResult'] = _RESPSCANRESULT
DESCRIPTOR.message_types_by_name['WiFiScanPayload'] = _WIFISCANPAYLOAD
DESCRIPTOR.enum_types_by_name['WiFiScanMsgType'] = _WIFISCANMSGTYPE
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
CmdScanStart = _reflection.GeneratedProtocolMessageType('CmdScanStart', (_message.Message,), dict(
DESCRIPTOR = _CMDSCANSTART,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:CmdScanStart)
))
_sym_db.RegisterMessage(CmdScanStart)
RespScanStart = _reflection.GeneratedProtocolMessageType('RespScanStart', (_message.Message,), dict(
DESCRIPTOR = _RESPSCANSTART,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:RespScanStart)
))
_sym_db.RegisterMessage(RespScanStart)
CmdScanStatus = _reflection.GeneratedProtocolMessageType('CmdScanStatus', (_message.Message,), dict(
DESCRIPTOR = _CMDSCANSTATUS,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:CmdScanStatus)
))
_sym_db.RegisterMessage(CmdScanStatus)
RespScanStatus = _reflection.GeneratedProtocolMessageType('RespScanStatus', (_message.Message,), dict(
DESCRIPTOR = _RESPSCANSTATUS,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:RespScanStatus)
))
_sym_db.RegisterMessage(RespScanStatus)
CmdScanResult = _reflection.GeneratedProtocolMessageType('CmdScanResult', (_message.Message,), dict(
DESCRIPTOR = _CMDSCANRESULT,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:CmdScanResult)
))
_sym_db.RegisterMessage(CmdScanResult)
WiFiScanResult = _reflection.GeneratedProtocolMessageType('WiFiScanResult', (_message.Message,), dict(
DESCRIPTOR = _WIFISCANRESULT,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:WiFiScanResult)
))
_sym_db.RegisterMessage(WiFiScanResult)
RespScanResult = _reflection.GeneratedProtocolMessageType('RespScanResult', (_message.Message,), dict(
DESCRIPTOR = _RESPSCANRESULT,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:RespScanResult)
))
_sym_db.RegisterMessage(RespScanResult)
WiFiScanPayload = _reflection.GeneratedProtocolMessageType('WiFiScanPayload', (_message.Message,), dict(
DESCRIPTOR = _WIFISCANPAYLOAD,
__module__ = 'wifi_scan_pb2'
# @@protoc_insertion_point(class_scope:WiFiScanPayload)
))
_sym_db.RegisterMessage(WiFiScanPayload)
# @@protoc_insertion_point(module_scope)

View File

@ -0,0 +1,199 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <string.h>
#include <esp_err.h>
#include <esp_log.h>
#include <esp_wifi.h>
#include <esp_netif.h>
#include "wifi_provisioning/wifi_config.h"
#include "wifi_provisioning/wifi_scan.h"
#include "wifi_provisioning/manager.h"
#include "wifi_provisioning_priv.h"
static const char *TAG = "wifi_prov_handlers";
/* Provide definition of wifi_prov_ctx_t */
struct wifi_prov_ctx {
wifi_config_t wifi_cfg;
};
static wifi_config_t *get_config(wifi_prov_ctx_t **ctx)
{
return (*ctx ? & (*ctx)->wifi_cfg : NULL);
}
static wifi_config_t *new_config(wifi_prov_ctx_t **ctx)
{
free(*ctx);
(*ctx) = (wifi_prov_ctx_t *) calloc(1, sizeof(wifi_prov_ctx_t));
return get_config(ctx);
}
static void free_config(wifi_prov_ctx_t **ctx)
{
free(*ctx);
*ctx = NULL;
}
static esp_err_t get_status_handler(wifi_prov_config_get_data_t *resp_data, wifi_prov_ctx_t **ctx)
{
/* Initialize to zero */
memset(resp_data, 0, sizeof(wifi_prov_config_get_data_t));
if (wifi_prov_mgr_get_wifi_state(&resp_data->wifi_state) != ESP_OK) {
ESP_LOGW(TAG, "Wi-Fi provisioning manager not running");
return ESP_ERR_INVALID_STATE;
}
if (resp_data->wifi_state == WIFI_PROV_STA_CONNECTED) {
ESP_LOGD(TAG, "Got state : connected");
/* IP Addr assigned to STA */
tcpip_adapter_ip_info_t ip_info;
tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_STA, &ip_info);
char *ip_addr = ip4addr_ntoa(&ip_info.ip);
strcpy(resp_data->conn_info.ip_addr, ip_addr);
/* AP information to which STA is connected */
wifi_ap_record_t ap_info;
esp_wifi_sta_get_ap_info(&ap_info);
memcpy(resp_data->conn_info.bssid, (char *)ap_info.bssid, sizeof(ap_info.bssid));
memcpy(resp_data->conn_info.ssid, (char *)ap_info.ssid, sizeof(ap_info.ssid));
resp_data->conn_info.channel = ap_info.primary;
resp_data->conn_info.auth_mode = ap_info.authmode;
/* Tell manager to stop provisioning service */
wifi_prov_mgr_done();
} else if (resp_data->wifi_state == WIFI_PROV_STA_DISCONNECTED) {
ESP_LOGD(TAG, "Got state : disconnected");
/* If disconnected, convey reason */
wifi_prov_mgr_get_wifi_disconnect_reason(&resp_data->fail_reason);
} else {
ESP_LOGD(TAG, "Got state : connecting");
}
return ESP_OK;
}
static esp_err_t set_config_handler(const wifi_prov_config_set_data_t *req_data, wifi_prov_ctx_t **ctx)
{
wifi_config_t *wifi_cfg = get_config(ctx);
if (wifi_cfg) {
free_config(ctx);
}
wifi_cfg = new_config(ctx);
if (!wifi_cfg) {
ESP_LOGE(TAG, "Unable to allocate Wi-Fi config");
return ESP_ERR_NO_MEM;
}
ESP_LOGD(TAG, "Wi-Fi Credentials Received");
/* Using strncpy allows the max SSID length to be 32 bytes (as per 802.11 standard).
* But this doesn't guarantee that the saved SSID will be null terminated, because
* wifi_cfg->sta.ssid is also 32 bytes long (without extra 1 byte for null character) */
strncpy((char *) wifi_cfg->sta.ssid, req_data->ssid, sizeof(wifi_cfg->sta.ssid));
/* Using strlcpy allows both max passphrase length (63 bytes) and ensures null termination
* because size of wifi_cfg->sta.password is 64 bytes (1 extra byte for null character) */
strlcpy((char *) wifi_cfg->sta.password, req_data->password, sizeof(wifi_cfg->sta.password));
return ESP_OK;
}
static esp_err_t apply_config_handler(wifi_prov_ctx_t **ctx)
{
wifi_config_t *wifi_cfg = get_config(ctx);
if (!wifi_cfg) {
ESP_LOGE(TAG, "Wi-Fi config not set");
return ESP_ERR_INVALID_STATE;
}
esp_err_t ret = wifi_prov_mgr_configure_sta(wifi_cfg);
if (ret == ESP_OK) {
ESP_LOGD(TAG, "Wi-Fi Credentials Applied");
} else {
ESP_LOGE(TAG, "Failed to apply Wi-Fi Credentials");
}
free_config(ctx);
return ret;
}
esp_err_t get_wifi_prov_handlers(wifi_prov_config_handlers_t *ptr)
{
if (!ptr) {
return ESP_ERR_INVALID_ARG;
}
ptr->get_status_handler = get_status_handler;
ptr->set_config_handler = set_config_handler;
ptr->apply_config_handler = apply_config_handler;
ptr->ctx = NULL;
return ESP_OK;
}
/*************************************************************************/
static esp_err_t scan_start(bool blocking, bool passive,
uint8_t group_channels, uint32_t period_ms,
wifi_prov_scan_ctx_t **ctx)
{
return wifi_prov_mgr_wifi_scan_start(blocking, passive, group_channels, period_ms);
}
static esp_err_t scan_status(bool *scan_finished,
uint16_t *result_count,
wifi_prov_scan_ctx_t **ctx)
{
*scan_finished = wifi_prov_mgr_wifi_scan_finished();
*result_count = wifi_prov_mgr_wifi_scan_result_count();
return ESP_OK;
}
static esp_err_t scan_result(uint16_t result_index,
wifi_prov_scan_result_t *result,
wifi_prov_scan_ctx_t **ctx)
{
const wifi_ap_record_t *record = wifi_prov_mgr_wifi_scan_result(result_index);
if (!record) {
return ESP_FAIL;
}
/* Compile time check ensures memory safety in case SSID length in
* record / result structure definition changes in future */
_Static_assert(sizeof(result->ssid) == sizeof(record->ssid),
"source and destination should be of same size");
memcpy(result->ssid, record->ssid, sizeof(record->ssid));
memcpy(result->bssid, record->bssid, sizeof(record->bssid));
result->channel = record->primary;
result->rssi = record->rssi;
result->auth = record->authmode;
return ESP_OK;
}
esp_err_t get_wifi_scan_handlers(wifi_prov_scan_handlers_t *ptr)
{
if (!ptr) {
return ESP_ERR_INVALID_ARG;
}
ptr->scan_start = scan_start;
ptr->scan_status = scan_status;
ptr->scan_result = scan_result;
ptr->ctx = NULL;
return ESP_OK;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,207 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <esp_log.h>
#include <esp_err.h>
#include <esp_wifi.h>
#include <mdns.h>
#include <protocomm.h>
#include <protocomm_httpd.h>
#include "wifi_provisioning/scheme_softap.h"
#include "wifi_provisioning_priv.h"
typedef struct softap_config {
protocomm_httpd_config_t httpd_config;
char ssid[33];
char password[65];
} wifi_prov_softap_config_t;
static const char *TAG = "wifi_prov_scheme_softap";
extern const wifi_prov_scheme_t wifi_prov_scheme_softap;
static void *scheme_softap_prov_httpd_handle;
static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
{
/* Build Wi-Fi configuration for AP mode */
wifi_config_t wifi_config = {
.ap = {
.max_connection = 5,
},
};
strncpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
wifi_config.ap.ssid_len = strnlen(ssid, sizeof(wifi_config.ap.ssid));
if (strlen(pass) == 0) {
memset(wifi_config.ap.password, 0, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_OPEN;
} else {
strlcpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_WPA_WPA2_PSK;
}
/* Run Wi-Fi in AP + STA mode with configuration built above */
esp_err_t err = esp_wifi_set_mode(WIFI_MODE_APSTA);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set Wi-Fi mode : %d", err);
return err;
}
err = esp_wifi_set_config(ESP_IF_WIFI_AP, &wifi_config);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set Wi-Fi config : %d", err);
return err;
}
return ESP_OK;
}
static esp_err_t prov_start(protocomm_t *pc, void *config)
{
if (!pc) {
ESP_LOGE(TAG, "Protocomm handle cannot be null");
return ESP_ERR_INVALID_ARG;
}
if (!config) {
ESP_LOGE(TAG, "Cannot start with null configuration");
return ESP_ERR_INVALID_ARG;
}
wifi_prov_softap_config_t *softap_config = (wifi_prov_softap_config_t *) config;
protocomm_httpd_config_t *httpd_config = &softap_config->httpd_config;
if (scheme_softap_prov_httpd_handle) {
httpd_config->ext_handle_provided = true;
httpd_config->data.handle = scheme_softap_prov_httpd_handle;
}
/* Start protocomm server on top of HTTP */
esp_err_t err = protocomm_httpd_start(pc, httpd_config);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to start protocomm HTTP server");
return err;
}
/* Start Wi-Fi softAP with specified ssid and password */
err = start_wifi_ap(softap_config->ssid, softap_config->password);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to start Wi-Fi AP");
protocomm_httpd_stop(pc);
return err;
}
/* Add mDNS service for allowing discovery of provisioning
* service on the SoftAP network (Optional). Even though
* this is an http service we identify it by _esp_wifi_prov so
* that application is free to use _http without conflict */
err = mdns_service_add("Wi-Fi Provisioning Service", "_esp_wifi_prov", "_tcp",
softap_config->httpd_config.data.config.port, NULL, 0);
if (err != ESP_OK) {
/* mDNS is not mandatory for provisioning to work,
* so print warning and return without failure */
ESP_LOGW(TAG, "Error adding mDNS service! Check if mDNS is running");
} else {
/* Information to identify the roles of the various
* protocomm endpoint URIs provided by the service */
err |= mdns_service_txt_item_set("_esp_wifi_prov", "_tcp", "version_endpoint", "/proto-ver");
err |= mdns_service_txt_item_set("_esp_wifi_prov", "_tcp", "session_endpoint", "/prov-session");
err |= mdns_service_txt_item_set("_esp_wifi_prov", "_tcp", "config_endpoint", "/prov-config");
if (err != ESP_OK) {
ESP_LOGE(TAG, "Error adding mDNS service text item");
}
}
return ESP_OK;
}
static esp_err_t prov_stop(protocomm_t *pc)
{
esp_err_t err = protocomm_httpd_stop(pc);
if (err != ESP_OK) {
ESP_LOGW(TAG, "Error occurred while stopping protocomm_httpd");
}
mdns_service_remove("_esp_wifi_prov", "_tcp");
return err;
}
static void *new_config(void)
{
wifi_prov_softap_config_t *softap_config = calloc(1, sizeof(wifi_prov_softap_config_t));
if (!softap_config) {
ESP_LOGE(TAG, "Error allocating memory for new configuration");
return NULL;
}
protocomm_httpd_config_t default_config = {
.data = {
.config = PROTOCOMM_HTTPD_DEFAULT_CONFIG()
}
};
softap_config->httpd_config = default_config;
return softap_config;
}
static void delete_config(void *config)
{
if (!config) {
ESP_LOGE(TAG, "Cannot delete null configuration");
return;
}
wifi_prov_softap_config_t *softap_config = (wifi_prov_softap_config_t *) config;
free(softap_config);
}
static esp_err_t set_config_service(void *config, const char *service_name, const char *service_key)
{
if (!config) {
ESP_LOGE(TAG, "Cannot set null configuration");
return ESP_ERR_INVALID_ARG;
}
if (!service_name) {
ESP_LOGE(TAG, "Service name cannot be NULL");
return ESP_ERR_INVALID_ARG;
}
wifi_prov_softap_config_t *softap_config = (wifi_prov_softap_config_t *) config;
strlcpy(softap_config->ssid, service_name, sizeof(softap_config->ssid));
if (service_key) {
strlcpy(softap_config->password, service_key, sizeof(softap_config->password));
}
return ESP_OK;
}
static esp_err_t set_config_endpoint(void *config, const char *endpoint_name, uint16_t uuid)
{
return ESP_OK;
}
void wifi_prov_scheme_softap_set_httpd_handle(void *handle)
{
scheme_softap_prov_httpd_handle = handle;
}
const wifi_prov_scheme_t wifi_prov_scheme_softap = {
.prov_start = prov_start,
.prov_stop = prov_stop,
.new_config = new_config,
.delete_config = delete_config,
.set_config_service = set_config_service,
.set_config_endpoint = set_config_endpoint,
.wifi_mode = WIFI_MODE_APSTA
};

View File

@ -151,15 +151,36 @@ static esp_err_t cmd_set_config_handler(WiFiConfigPayload *req,
wifi_prov_config_set_data_t req_data;
memset(&req_data, 0, sizeof(req_data));
memcpy(req_data.ssid, req->cmd_set_config->ssid.data,
req->cmd_set_config->ssid.len);
memcpy(req_data.password, req->cmd_set_config->passphrase.data,
req->cmd_set_config->passphrase.len);
memcpy(req_data.bssid, req->cmd_set_config->bssid.data,
req->cmd_set_config->bssid.len);
req_data.channel = req->cmd_set_config->channel;
if (h->set_config_handler(&req_data, &h->ctx) == ESP_OK) {
resp_payload->status = STATUS__Success;
/* Check arguments provided in protobuf packet:
* - SSID / Passphrase string length must be within the standard limits
* - BSSID must either be NULL or have length equal to that imposed by the standard
* If any of these conditions are not satisfied, don't invoke the handler and
* send error status without closing connection */
resp_payload->status = STATUS__InvalidArgument;
if (req->cmd_set_config->bssid.len != 0 &&
req->cmd_set_config->bssid.len != sizeof(req_data.bssid)) {
ESP_LOGD(TAG, "Received invalid BSSID");
} else if (req->cmd_set_config->ssid.len >= sizeof(req_data.ssid)) {
ESP_LOGD(TAG, "Received invalid SSID");
} else if (req->cmd_set_config->passphrase.len >= sizeof(req_data.password)) {
ESP_LOGD(TAG, "Received invalid Passphrase");
} else {
/* The received SSID and Passphrase are not NULL terminated so
* we memcpy over zeroed out arrays. Above length checks ensure
* that there is atleast 1 extra byte for null termination */
memcpy(req_data.ssid, req->cmd_set_config->ssid.data,
req->cmd_set_config->ssid.len);
memcpy(req_data.password, req->cmd_set_config->passphrase.data,
req->cmd_set_config->passphrase.len);
memcpy(req_data.bssid, req->cmd_set_config->bssid.data,
req->cmd_set_config->bssid.len);
req_data.channel = req->cmd_set_config->channel;
if (h->set_config_handler(&req_data, &h->ctx) == ESP_OK) {
resp_payload->status = STATUS__Success;
} else {
resp_payload->status = STATUS__InternalError;
}
}
resp->payload_case = WI_FI_CONFIG_PAYLOAD__PAYLOAD_RESP_SET_CONFIG;
@ -188,7 +209,7 @@ static esp_err_t cmd_apply_config_handler(WiFiConfigPayload *req,
if (h->apply_config_handler(&h->ctx) == ESP_OK) {
resp_payload->status = STATUS__Success;
} else {
resp_payload->status = STATUS__InvalidArgument;
resp_payload->status = STATUS__InternalError;
}
resp->payload_case = WI_FI_CONFIG_PAYLOAD__PAYLOAD_RESP_APPLY_CONFIG;

View File

@ -0,0 +1,102 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <protocomm.h>
#include <protocomm_security.h>
#include "wifi_provisioning/manager.h"
#include "wifi_provisioning/wifi_config.h"
#include "wifi_provisioning/wifi_scan.h"
/**
* @brief Notify manager that provisioning is done
*
* Stops the provisioning. This is called by the get_status_handler()
* when the status is connected. This has no effect if main application
* has disabled auto stop on completion by calling
* wifi_prov_mgr_disable_auto_stop()
*
* @return
* - ESP_OK : Provisioning will be stopped
* - ESP_FAIL : Failed to stop provisioning
*/
esp_err_t wifi_prov_mgr_done(void);
/**
* @brief Start Wi-Fi AP Scan
*
* @param[in] blocking Set true to return only after scanning is complete
* @param[in] passive Set true to perform passive scan instead of default active scan
* @param[in] group_channels Number of channels to scan in one go
* (set to 0 for scanning all channels in one go)
* @param[in] period_ms Scan time (in milli-seconds) on each channel
*
* @return
* - ESP_OK : Successfully started Wi-Fi scanning
* - ESP_FAIL : Provisioning app not running
*/
esp_err_t wifi_prov_mgr_wifi_scan_start(bool blocking, bool passive,
uint8_t group_channels,
uint32_t period_ms);
/**
* @brief Use to query the state of Wi-Fi scan
*
* @return
* - true : Scan finished
* - false : Scan running
*/
bool wifi_prov_mgr_wifi_scan_finished(void);
/**
* @brief Get the count of results in the scan list
*
* @return
* - count : Number of Wi-Fi Access Points detected while scanning
*/
uint16_t wifi_prov_mgr_wifi_scan_result_count(void);
/**
* @brief Get AP record for a particular index in the scan list result
*
* @param[out] index Index of the result to fetch
*
* @return
* - result : Pointer to Access Point record
*/
const wifi_ap_record_t *wifi_prov_mgr_wifi_scan_result(uint16_t index);
/**
* @brief Get protocomm handlers for wifi_config provisioning endpoint
*
* @param[out] ptr pointer to structure to be set
*
* @return
* - ESP_OK : success
* - ESP_ERR_INVALID_ARG : null argument
*/
esp_err_t get_wifi_prov_handlers(wifi_prov_config_handlers_t *ptr);
/**
* @brief Get protocomm handlers for wifi_scan provisioning endpoint
*
* @param[out] ptr pointer to structure to be set
*
* @return
* - ESP_OK : success
* - ESP_ERR_INVALID_ARG : null argument
*/
esp_err_t get_wifi_scan_handlers(wifi_prov_scan_handlers_t *ptr);

View File

@ -0,0 +1,297 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <esp_log.h>
#include <string.h>
#include <esp_err.h>
#include <esp_wifi.h>
#include "wifi_scan.pb-c.h"
#include <wifi_provisioning/wifi_scan.h>
static const char *TAG = "proto_wifi_scan";
typedef struct wifi_prov_scan_cmd {
int cmd_num;
esp_err_t (*command_handler)(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data);
} wifi_prov_scan_cmd_t;
static esp_err_t cmd_scan_start_handler(WiFiScanPayload *req,
WiFiScanPayload *resp,
void *priv_data);
static esp_err_t cmd_scan_status_handler(WiFiScanPayload *req,
WiFiScanPayload *resp,
void *priv_data);
static esp_err_t cmd_scan_result_handler(WiFiScanPayload *req,
WiFiScanPayload *resp,
void *priv_data);
static wifi_prov_scan_cmd_t cmd_table[] = {
{
.cmd_num = WI_FI_SCAN_MSG_TYPE__TypeCmdScanStart,
.command_handler = cmd_scan_start_handler
},
{
.cmd_num = WI_FI_SCAN_MSG_TYPE__TypeCmdScanStatus,
.command_handler = cmd_scan_status_handler
},
{
.cmd_num = WI_FI_SCAN_MSG_TYPE__TypeCmdScanResult,
.command_handler = cmd_scan_result_handler
}
};
static esp_err_t cmd_scan_start_handler(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data)
{
wifi_prov_scan_handlers_t *h = (wifi_prov_scan_handlers_t *) priv_data;
if (!h) {
ESP_LOGE(TAG, "Command invoked without handlers");
return ESP_ERR_INVALID_STATE;
}
RespScanStart *resp_payload = (RespScanStart *) malloc(sizeof(RespScanStart));
if (!resp_payload) {
ESP_LOGE(TAG, "Error allocating memory");
return ESP_ERR_NO_MEM;
}
resp_scan_start__init(resp_payload);
resp->status = (h->scan_start(req->cmd_scan_start->blocking,
req->cmd_scan_start->passive,
req->cmd_scan_start->group_channels,
req->cmd_scan_start->period_ms,
&h->ctx) == ESP_OK ?
STATUS__Success : STATUS__InternalError);
resp->payload_case = WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_START;
resp->resp_scan_start = resp_payload;
return ESP_OK;
}
static esp_err_t cmd_scan_status_handler(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data)
{
bool scan_finished = false;
uint16_t result_count = 0;
wifi_prov_scan_handlers_t *h = (wifi_prov_scan_handlers_t *) priv_data;
if (!h) {
ESP_LOGE(TAG, "Command invoked without handlers");
return ESP_ERR_INVALID_STATE;
}
RespScanStatus *resp_payload = (RespScanStatus *) malloc(sizeof(RespScanStatus));
if (!resp_payload) {
ESP_LOGE(TAG, "Error allocating memory");
return ESP_ERR_NO_MEM;
}
resp_scan_status__init(resp_payload);
resp->status = (h->scan_status(&scan_finished, &result_count, &h->ctx) == ESP_OK ?
STATUS__Success : STATUS__InternalError);
resp_payload->scan_finished = scan_finished;
resp_payload->result_count = result_count;
resp->payload_case = WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_STATUS;
resp->resp_scan_status = resp_payload;
return ESP_OK;
}
static esp_err_t cmd_scan_result_handler(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data)
{
esp_err_t err;
wifi_prov_scan_result_t scan_result = {{0}, {0}, 0, 0, 0};
WiFiScanResult **results = NULL;
wifi_prov_scan_handlers_t *h = (wifi_prov_scan_handlers_t *) priv_data;
if (!h) {
ESP_LOGE(TAG, "Command invoked without handlers");
return ESP_ERR_INVALID_STATE;
}
RespScanResult *resp_payload = (RespScanResult *) malloc(sizeof(RespScanResult));
if (!resp_payload) {
ESP_LOGE(TAG, "Error allocating memory");
return ESP_ERR_NO_MEM;
}
resp_scan_result__init(resp_payload);
resp->status = STATUS__Success;
resp->payload_case = WI_FI_SCAN_PAYLOAD__PAYLOAD_RESP_SCAN_RESULT;
resp->resp_scan_result = resp_payload;
results = (WiFiScanResult **) calloc(req->cmd_scan_result->count,
sizeof(WiFiScanResult *));
if (!results) {
ESP_LOGE(TAG, "Failed to allocate memory for results array");
return ESP_ERR_NO_MEM;
}
resp_payload->entries = results;
resp_payload->n_entries = req->cmd_scan_result->count;
for (uint16_t i = 0; i < req->cmd_scan_result->count; i++) {
err = h->scan_result(i + req->cmd_scan_result->start_index,
&scan_result, &h->ctx);
if (err != ESP_OK) {
resp->status = STATUS__InternalError;
break;
}
results[i] = (WiFiScanResult *) malloc(sizeof(WiFiScanResult));
if (!results[i]) {
ESP_LOGE(TAG, "Failed to allocate memory for result entry");
return ESP_ERR_NO_MEM;
}
wi_fi_scan_result__init(results[i]);
results[i]->ssid.len = strnlen(scan_result.ssid, 32);
results[i]->ssid.data = (uint8_t *) strndup(scan_result.ssid, 32);
if (!results[i]->ssid.data) {
ESP_LOGE(TAG, "Failed to allocate memory for scan result entry SSID");
return ESP_ERR_NO_MEM;
}
results[i]->channel = scan_result.channel;
results[i]->rssi = scan_result.rssi;
results[i]->auth = scan_result.auth;
results[i]->bssid.len = sizeof(scan_result.bssid);
results[i]->bssid.data = malloc(results[i]->bssid.len);
if (!results[i]->bssid.data) {
ESP_LOGE(TAG, "Failed to allocate memory for scan result entry BSSID");
return ESP_ERR_NO_MEM;
}
memcpy(results[i]->bssid.data, scan_result.bssid, results[i]->bssid.len);
}
return ESP_OK;
}
static int lookup_cmd_handler(int cmd_id)
{
int i;
for (i = 0; i < sizeof(cmd_table)/sizeof(wifi_prov_scan_cmd_t); i++) {
if (cmd_table[i].cmd_num == cmd_id) {
return i;
}
}
return -1;
}
static void wifi_prov_scan_cmd_cleanup(WiFiScanPayload *resp, void *priv_data)
{
switch (resp->msg) {
case WI_FI_SCAN_MSG_TYPE__TypeRespScanStart:
{
free(resp->resp_scan_start);
}
break;
case WI_FI_SCAN_MSG_TYPE__TypeRespScanStatus:
{
free(resp->resp_scan_status);
}
break;
case WI_FI_SCAN_MSG_TYPE__TypeRespScanResult:
{
if (!resp->resp_scan_result) return;
if (resp->resp_scan_result->entries) {
for (uint16_t i = 0; i < resp->resp_scan_result->n_entries; i++) {
if (!resp->resp_scan_result->entries[i]) continue;
free(resp->resp_scan_result->entries[i]->ssid.data);
free(resp->resp_scan_result->entries[i]->bssid.data);
free(resp->resp_scan_result->entries[i]);
}
free(resp->resp_scan_result->entries);
}
free(resp->resp_scan_result);
}
break;
default:
ESP_LOGE(TAG, "Unsupported response type in cleanup_handler");
break;
}
return;
}
static esp_err_t wifi_prov_scan_cmd_dispatcher(WiFiScanPayload *req,
WiFiScanPayload *resp, void *priv_data)
{
esp_err_t ret;
ESP_LOGD(TAG, "In wifi_prov_scan_cmd_dispatcher Cmd=%d", req->msg);
int cmd_index = lookup_cmd_handler(req->msg);
if (cmd_index < 0) {
ESP_LOGE(TAG, "Invalid command handler lookup");
return ESP_FAIL;
}
ret = cmd_table[cmd_index].command_handler(req, resp, priv_data);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Error executing command handler");
return ESP_FAIL;
}
return ESP_OK;
}
esp_err_t wifi_prov_scan_handler(uint32_t session_id, const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen, void *priv_data)
{
WiFiScanPayload *req;
WiFiScanPayload resp;
esp_err_t ret = ESP_OK;
req = wi_fi_scan_payload__unpack(NULL, inlen, inbuf);
if (!req) {
ESP_LOGE(TAG, "Unable to unpack scan message");
return ESP_ERR_INVALID_ARG;
}
wi_fi_scan_payload__init(&resp);
ret = wifi_prov_scan_cmd_dispatcher(req, &resp, priv_data);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "Command dispatcher error %d", ret);
ret = ESP_FAIL;
goto exit;
}
resp.msg = req->msg + 1; /* Response is request + 1 */
*outlen = wi_fi_scan_payload__get_packed_size(&resp);
if (*outlen <= 0) {
ESP_LOGE(TAG, "Invalid encoding for response");
ret = ESP_FAIL;
goto exit;
}
*outbuf = (uint8_t *) malloc(*outlen);
if (!*outbuf) {
ESP_LOGE(TAG, "System out of memory");
ret = ESP_ERR_NO_MEM;
goto exit;
}
wi_fi_scan_payload__pack(&resp, *outbuf);
ESP_LOGD(TAG, "Response packet size : %d", *outlen);
exit:
wi_fi_scan_payload__free_unpacked(req, NULL);
wifi_prov_scan_cmd_cleanup(&resp, priv_data);
return ret;
}

View File

@ -1,6 +1,25 @@
# Provisioning Application Examples
These consist of the following examples :
This primarily consists of a single unified example wifi_prov_mgr
* wifi_prov_mgr
Abstracts out most of the complexity of Wi-Fi provisioning and allows easy switching between the SoftAP (using HTTP) and BLE transports. It also demonstrates how applications can register and use additional custom data endpoints.
Provisioning applications are available for various platforms:
* Android:
- [BLE Provisioning app on Play Store](https://play.google.com/store/apps/details?id=com.espressif.provble).
- [SoftAP Provisioning app on Play Store](https://play.google.com/store/apps/details?id=com.espressif.provsoftap).
- Source code on GitHub: [esp-idf-provisioning-android](https://github.com/espressif/esp-idf-provisioning-android).
* iOS:
- [BLE Provisioning app on app store](https://apps.apple.com/in/app/esp-ble-provisioning/id1473590141)
- [SoftAP Provisioning app on app Store](https://apps.apple.com/in/app/esp-softap-provisioning/id1474040630)
- Source code on GitHub: [esp-idf-provisioning-ios](https://github.com/espressif/esp-idf-provisioning-ios)
* For all other platforms a python based command line tool is provided under "$IDF_PATH/tools/esp_prov"
## Legacy Examples
The legacy examples require own implementation of provisioning functions and handlers. The Wi-Fi provisioning component abstracts out most of this complexity and provides a simpler interface and so, that is recommended for use. However, if you want to use lower level provisioning and protocomm APIs, you can check the these examples under legacy/ folder:
* softap_prov
Provisioning involves Wi-Fi station configuration via an HTTP server running on the device, which is initially configured to be in SoftAP mode. After provisioning, device runs in Wi-Fi station mode only and connects to the AP whose credentials were provided during provisioning.
@ -14,10 +33,4 @@ These consist of the following examples :
* custom_config
Similar to softap_prov examples, but allows for configuration of custom (device-local) information during provisioning. This is intended as an example for implementing custom provisioning schemes.
Provisioning applications are available for various platforms:
* For Android, a provisioning application along with source code is available on GitHub : [esp-idf-provisioning-android](https://github.com/espressif/esp-idf-provisioning-android)
* For iOS, a provisioning application along with source code is available on GitHub : [esp-idf-provisioning-ios](https://github.com/espressif/esp-idf-provisioning-ios)
* For all other platforms a python based command line tool is provided under "$IDF_PATH/tools/esp_prov"
Refer to the README.md files in each example directory for more information.

View File

@ -1,8 +0,0 @@
set(COMPONENT_ADD_INCLUDEDIRS include)
set(COMPONENT_PRIV_INCLUDEDIRS proto-c)
set(COMPONENT_SRCS "src/custom_config.c"
"proto-c/custom_config.pb-c.c")
set(COMPONENT_PRIV_REQUIRES protobuf-c)
register_component()

View File

@ -1,11 +0,0 @@
# Protobuf files for defining custom config-data packet structures
This is an example proto file defining custom configuration related data packet structures, namely -
1. CustomConfigRequest - for sending configuration data consisting of various fields (Info and Version)
2. CustomConfigResponse - for receiving configuration status (fail/success)
Note : These proto files are not automatically compiled during the build process.
Run "make" (Optional) to generate the respective C and Python files. The generated C files are used by protocomm itself to create, delete and manipulate transaction packets. The generated Python files can be used by python based applications for implementing client side interface to protocomm layer.
Compilation requires protoc (Protobuf Compiler) and protoc-c (Protobuf C Compiler) installed. Since the generated files are to remain the same, as long as the proto files are not modified, therefore the generated files are already available under "protocomm/proto-c" and "protocomm/python" directories, and thus running make (and installing the Protobuf compilers) is optional.

View File

@ -1,6 +0,0 @@
set(COMPONENT_SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c")
set(COMPONENT_ADD_INCLUDEDIRS ".")
register_component()

View File

@ -1,58 +0,0 @@
menu "Example Configuration"
config SOFTAP_SSID
string "WiFi SSID"
default "myssid"
help
SSID (network name) for the example to connect to.
config SOFTAP_PASS
string "WiFi Password"
default "mypassword"
help
WiFi password (WPA or WPA2) for the example to use.
config USE_SEC_1
bool
default n
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config USE_POP
bool
depends on USE_SEC_1
default n
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config POP
string "Proof-of-possession"
default "abcd1234"
depends on USE_POP
config PROTOCOMM_HTTPD_PORT
int "Protocomm HTTP Port"
default 80
help
Port on which to run Protocomm HTTP based provisioning service
config RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the WiFi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -1,3 +0,0 @@
CONFIG_ENABLE_UNIFIED_PROVISIONING=y
CONFIG_LWIP_NETIF_LOOPBACK=y
CONFIG_LWIP_LOOPBACK_MAX_PBUFS=1

View File

@ -2,9 +2,5 @@
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
# (Not part of the boilerplate)
# This example uses an extra component for common functions such as Wi-Fi and Ethernet connection.
set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/protocol_examples_common)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(custom_config)

View File

@ -5,7 +5,5 @@
PROJECT_NAME := custom_config
EXTRA_COMPONENT_DIRS = $(IDF_PATH)/examples/common_components/protocol_examples_common
include $(IDF_PATH)/make/project.mk

View File

@ -1,4 +1,6 @@
# SoftAP + HTTPD based Provisioning Example featuring Custom configuration
# SoftAP + HTTPD based Provisioning Example featuring Custom configuration (Legacy)
> Note: It is recommended to use the new `wifi_prov_mgr` example which is based on the simpler `wifi_provisioning` APIs. Check this example only if you wish to use lower level provisioning and protocomm APIs and want more control over the handlers.
(See the README.md file in the upper level 'examples' directory for more information about examples.)
@ -29,11 +31,9 @@ To provision the device running this example, the `esp_prov.py` script needs to
### Configure the project
```
make menuconfig
idf.py menuconfig
```
* Set serial port under Serial Flasher Options.
* Under Example Configuration set the following :
* SoftAP SSID (Defaults to PROV_<MACID>)
* SoftAP Password (Defaults to PROV_PASS)
@ -45,7 +45,7 @@ make menuconfig
Build the project and flash it to the board, then run monitor tool to view serial output:
```
make -j4 flash monitor
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
@ -68,7 +68,7 @@ I (519482) tcpip_adapter: softAP assign IP to station,IP is: 192.168.4.2
In a separate terminal run the `esp_prov.py` script under `$IDP_PATH/tools/esp_prov` directory (please replace the values corresponding to the parameters `--custom_info` and `--custom_ver` with your desired values for the custom configuration). Assuming default example configuration, the script should be run as follows :
```
python esp_prov.py --ssid myssid --passphrase mypassword --sec_ver 0 --transport softap --softap_endpoint 192.168.4.1:80 --custom_config --custom_info "some string" --custom_ver 4321
python esp_prov.py --transport softap --service_name "192.168.4.1:80" --sec_ver 0 --ssid myssid --passphrase mypassword --custom_config --custom_info "some string" --custom_ver 4321
```
Above command will perform the provisioning steps, and the monitor log should display something like this :
@ -138,7 +138,7 @@ It means the Wi-Fi credentials were already set by some other application flashe
```
make erase_flash
make -j4 flash monitor
idf.py -p PORT flash monitor
```
Or, enable `Reset Provisioning` option under `Example Configuration` under menuconfig. But this will erase the saved Wi-Fi credentials every time the device boots, so this is not the preferred solution.

View File

@ -0,0 +1,5 @@
idf_component_register(SRCS "src/custom_config.c"
"proto-c/custom_config.pb-c.c"
INCLUDE_DIRS include
PRIV_INCLUDE_DIRS proto-c
PRIV_REQUIRES protobuf-c)

View File

@ -14,7 +14,6 @@
#ifndef _CUSTOM_PROV_CONFIG_H_
#define _CUSTOM_PROV_CONFIG_H_
#include <stdlib.h>
/**
* @brief Custom config data received by device

View File

@ -0,0 +1,26 @@
cmake_minimum_required(VERSION 3.5)
set(PROTO_COMPILER "protoc")
set(PROTO_C_COMPILER "protoc-c")
set(C_OUT_PATH "${CMAKE_CURRENT_LIST_DIR}/../proto-c")
set(PY_OUT_PATH "${CMAKE_CURRENT_LIST_DIR}/../python")
set(PROTO_SRCS "custom_config.proto")
add_custom_target(c_proto
COMMAND ${PROTO_C_COMPILER} --c_out=${C_OUT_PATH} -I . ${PROTO_SRCS}
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)
add_custom_target(python_proto
COMMAND ${PROTO_COMPILER} --python_out=${PY_OUT_PATH} -I . ${PROTO_SRCS}
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)
add_custom_target(proto ALL
DEPENDS c_proto python_proto
VERBATIM
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
)

View File

@ -0,0 +1,27 @@
# Protobuf files for defining custom config-data packet structures
This is an example proto file defining custom configuration related data packet structures, namely -
1. CustomConfigRequest - for sending configuration data consisting of various fields (Info and Version)
2. CustomConfigResponse - for receiving configuration status (fail/success)
Note : These proto files are not automatically compiled during the build process.
# Compilation
Compilation requires protoc (Protobuf Compiler) and protoc-c (Protobuf C Compiler) installed. Since the generated files are to remain the same, as long as the proto files are not modified, therefore the generated files are already available under `examples/provisioning/custom_config/components/custom_provisioning/proto-c` and `examples/provisioning/custom_config/components/custom_provisioning/python` directories, and thus running cmake / make (and installing the Protobuf compilers) is optional.
If using `cmake` follow the below steps. If using `make`, jump to Step 2 directly.
## Step 1 (Only for cmake)
When using cmake, first create a build directory and call cmake from inside:
```
mkdir build
cd build
cmake ..
```
## Step 2
Simply run `make` to generate the respective C and Python files. The newly created files will overwrite those under `examples/provisioning/custom_config/components/custom_provisioning/proto-c` and `examples/provisioning/custom_config/components/custom_provisioning/python`

View File

@ -13,6 +13,7 @@
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <esp_log.h>
#include <string.h>
#include <esp_err.h>

View File

@ -0,0 +1,4 @@
idf_component_register(SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,58 @@
menu "Example Configuration"
config EXAMPLE_SSID
string "Wi-Fi SSID"
default "myssid"
help
SSID (network name) for the example to connect to.
config EXAMPLE_PASS
string "Wi-Fi Password"
default "mypassword"
help
Wi-Fi password (WPA or WPA2) for the example to use.
config EXAMPLE_USE_SEC_1
bool
default n
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config EXAMPLE_USE_POP
bool
depends on EXAMPLE_USE_SEC_1
default n
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config EXAMPLE_POP
string "Proof-of-possession"
default "abcd1234"
depends on EXAMPLE_USE_POP
config EXAMPLE_PROTOCOMM_HTTPD_PORT
int "Protocomm HTTP Port"
default 80
help
Port on which to run Protocomm HTTP based provisioning service
config EXAMPLE_RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the Wi-Fi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -8,27 +8,23 @@
*/
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <esp_system.h>
#include <esp_wifi.h>
#include <esp_event.h>
#include <esp_log.h>
#include <nvs_flash.h>
#include "esp_netif.h"
#include "esp_event.h"
#include "protocol_examples_common.h"
#include "nvs.h"
#include "nvs_flash.h"
#include <lwip/err.h>
#include <lwip/sys.h>
#include "app_prov.h"
static const char *TAG = "app";
#define EXAMPLE_AP_RECONN_ATTEMPTS CONFIG_EXAMPLE_AP_RECONN_ATTEMPTS
static const char *TAG = "app";
static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
@ -45,44 +41,50 @@ static void event_handler(void* arg, esp_event_base_t event_base,
ESP_LOGI(TAG,"connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:%s",
ip4addr_ntoa(&event->ip_info.ip));
ESP_LOGI(TAG, "got ip: " IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
}
}
static void wifi_init_sta()
static void wifi_init_sta(void)
{
/* Set our event handling */
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, event_handler, NULL));
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_start() );
/* Start Wi-Fi in station mode with credentials set during provisioning */
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
}
void app_main()
static void start_softap_provisioning(void)
{
/* Security version */
int security = 0;
/* Proof of possession */
const protocomm_security_pop_t *pop = NULL;
#ifdef CONFIG_USE_SEC_1
#ifdef CONFIG_EXAMPLE_USE_SEC_1
security = 1;
#endif
/* Having proof of possession is optional */
#ifdef CONFIG_USE_POP
#ifdef CONFIG_EXAMPLE_USE_POP
const static protocomm_security_pop_t app_pop = {
.data = (uint8_t *) CONFIG_POP,
.len = (sizeof(CONFIG_POP)-1)
.data = (uint8_t *) CONFIG_EXAMPLE_POP,
.len = (sizeof(CONFIG_EXAMPLE_POP)-1)
};
pop = &app_pop;
#endif
ESP_ERROR_CHECK(app_prov_start_softap_provisioning(
CONFIG_EXAMPLE_SSID, CONFIG_EXAMPLE_PASS, security, pop));
}
void app_main(void)
{
/* Initialize networking stack */
tcpip_adapter_init();
ESP_ERROR_CHECK(esp_netif_init());
/* Create default event loop needed by the
* main app and the provisioning service */
@ -91,6 +93,10 @@ void app_main()
/* Initialize NVS needed by Wi-Fi */
ESP_ERROR_CHECK(nvs_flash_init());
/* Initialize Wi-Fi including netif with default config */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/* Check if device is provisioned */
bool provisioned;
if (app_prov_is_provisioned(&provisioned) != ESP_OK) {
@ -101,11 +107,10 @@ void app_main()
if (provisioned == false) {
/* If not provisioned, start provisioning via soft AP */
ESP_LOGI(TAG, "Starting WiFi SoftAP provisioning");
app_prov_start_softap_provisioning(CONFIG_SOFTAP_SSID, CONFIG_SOFTAP_PASS,
security, pop);
start_softap_provisioning();
} else {
/* Start WiFi station with credentials set during provisioning */
ESP_LOGI(TAG, "Starting WiFi station");
wifi_init_sta(NULL);
wifi_init_sta();
}
}

View File

@ -13,6 +13,7 @@
#include <esp_wifi.h>
#include <nvs_flash.h>
#include <nvs.h>
#include <esp_event.h>
#include <task.h>
#include <stdlib.h>
@ -28,6 +29,9 @@
static const char *TAG = "app_prov";
/* Handler for catching WiFi events */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t base, int id, void* data);
/* Handlers for provisioning endpoints */
extern wifi_prov_config_handlers_t wifi_prov_handlers;
extern custom_prov_config_handler_t custom_prov_handler;
@ -117,6 +121,10 @@ static void app_prov_stop_service(void)
protocomm_httpd_stop(g_prov->pc);
/* Delete protocomm instance */
protocomm_delete(g_prov->pc);
/* Remove event handler */
esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler);
esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler);
}
/* Task spawned by timer callback */
@ -145,33 +153,24 @@ static void _stop_prov_cb(void * arg)
xTaskCreate(&stop_prov_task, "stop_prov", 2048, NULL, tskIDLE_PRIORITY, NULL);
}
/* Event handler for starting/stopping provisioning.
* To be called from within the context of the main
* event handler.
*/
esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
/* Event handler for starting/stopping provisioning */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
/* For accessing reason codes in case of disconnection */
system_event_info_t *info = &event->event_info;
/* If pointer to provisioning application data is NULL
* then provisioning is not running, therefore return without
* error */
* then provisioning is not running */
if (!g_prov) {
return ESP_OK;
return;
}
switch(event->event_id) {
case SYSTEM_EVENT_STA_START:
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
ESP_LOGI(TAG, "STA Start");
/* Once configuration is received by protocomm server,
* device is restarted as both AP and Station.
* Once station starts, wait for connection to
* establish with configured host SSID and password */
/* Once configuration is received through protocomm,
* device is started as station. Once station starts,
* wait for connection to establish with configured
* host SSID and password */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
break;
case SYSTEM_EVENT_STA_GOT_IP:
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ESP_LOGI(TAG, "STA Got IP");
/* Station got IP. That means configuration is successful.
* Schedule timer to stop provisioning app after 30 seconds. */
@ -188,16 +187,16 @@ esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
* signaling a failure in provisioning. */
esp_timer_start_once(g_prov->timer, 30000*1000U);
}
break;
case SYSTEM_EVENT_STA_DISCONNECTED:
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
ESP_LOGE(TAG, "STA Disconnected");
/* Station couldn't connect to configured host SSID */
g_prov->wifi_state = WIFI_PROV_STA_DISCONNECTED;
ESP_LOGE(TAG, "Disconnect reason : %d", info->disconnected.reason);
wifi_event_sta_disconnected_t* disconnected = (wifi_event_sta_disconnected_t*) event_data;
ESP_LOGE(TAG, "Disconnect reason : %d", disconnected->reason);
/* Set code corresponding to the reason for disconnection */
switch (info->disconnected.reason) {
switch (disconnected->reason) {
case WIFI_REASON_AUTH_EXPIRE:
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
case WIFI_REASON_BEACON_TIMEOUT:
@ -215,18 +214,13 @@ esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
/* If none of the expected reasons,
* retry connecting to host SSID */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
if (info->disconnected.reason == WIFI_REASON_BASIC_RATE_NOT_SUPPORT) {
if (disconnected->reason == WIFI_REASON_BASIC_RATE_NOT_SUPPORT) {
/*Switch to 802.11 bgn mode */
esp_wifi_set_protocol(ESP_IF_WIFI_STA, WIFI_PROTOCOL_11B | WIFI_PROTOCOL_11G | WIFI_PROTOCOL_11N);
}
esp_wifi_connect();
}
break;
default:
break;
}
return ESP_OK;
}
esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state)
@ -255,25 +249,15 @@ esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reaso
esp_err_t app_prov_is_provisioned(bool *provisioned)
{
#ifdef CONFIG_RESET_PROVISIONED
*provisioned = false;
#ifdef CONFIG_EXAMPLE_RESET_PROVISIONED
nvs_flash_erase();
#endif
if (nvs_flash_init() != ESP_OK) {
ESP_LOGE(TAG, "Failed to init NVS");
return ESP_FAIL;
}
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
if (esp_wifi_init(&cfg) != ESP_OK) {
ESP_LOGE(TAG, "Failed to init wifi");
return ESP_FAIL;
}
/* Get WiFi Station configuration */
wifi_config_t wifi_cfg;
if (esp_wifi_get_config(ESP_IF_WIFI_STA, &wifi_cfg) != ESP_OK) {
*provisioned = false;
return ESP_FAIL;
}
@ -318,14 +302,6 @@ esp_err_t app_prov_configure_sta(wifi_config_t *wifi_cfg)
static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
{
/* Initialize WiFi with default configuration */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
esp_err_t err = esp_wifi_init(&cfg);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to init WiFi : %d", err);
return err;
}
/* Build WiFi configuration for AP mode */
wifi_config_t wifi_config = {
.ap = {
@ -333,19 +309,18 @@ static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
},
};
strncpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
wifi_config.ap.ssid_len = strlen(ssid);
strlcpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
if (strlen(pass) == 0) {
memset(wifi_config.ap.password, 0, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_OPEN;
} else {
strncpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
strlcpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_WPA_WPA2_PSK;
}
/* Start WiFi in AP mode with configuration built above */
err = esp_wifi_set_mode(WIFI_MODE_AP);
esp_err_t err = esp_wifi_set_mode(WIFI_MODE_AP);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi mode : %d", err);
return err;
@ -381,7 +356,7 @@ esp_err_t app_prov_start_softap_provisioning(const char *ssid, const char *pass,
return ESP_ERR_NO_MEM;
}
/* Initialise app data */
/* Initialize app data */
g_prov->pop = pop;
g_prov->security = security;
@ -398,6 +373,18 @@ esp_err_t app_prov_start_softap_provisioning(const char *ssid, const char *pass,
return err;
}
err = esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register WiFi event handler");
return err;
}
err = esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register IP event handler");
return err;
}
/* Start WiFi softAP with specified ssid and password */
err = start_wifi_ap(ssid, pass);
if (err != ESP_OK) {

View File

@ -9,7 +9,7 @@
#pragma once
#include <esp_event_loop.h>
#include <esp_event.h>
#include <protocomm_security.h>
#include <wifi_provisioning/wifi_config.h>
@ -43,21 +43,6 @@ esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state);
*/
esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reason);
/**
* @brief Event handler for provisioning app
*
* This is called from the main event handler and controls the
* provisioning application, depeding on WiFi events
*
* @param[in] ctx Event context data
* @param[in] event Event info
*
* @return
* - ESP_OK : Event handled successfully
* - ESP_FAIL : Failed to start server on event AP start
*/
esp_err_t app_prov_event_handler(void *ctx, system_event_t *event);
/**
* @brief Checks if device is provisioned
* *

View File

@ -15,7 +15,7 @@
#include <esp_log.h>
#include <esp_wifi.h>
#include <tcpip_adapter.h>
#include <esp_netif.h>
#include <wifi_provisioning/wifi_config.h>
#include <custom_provisioning/custom_config.h>
@ -110,10 +110,14 @@ static esp_err_t set_config_handler(const wifi_prov_config_set_data_t *req_data,
ESP_LOGI(TAG, "WiFi Credentials Received : \n\tssid %s \n\tpassword %s",
req_data->ssid, req_data->password);
memcpy((char *) wifi_cfg->sta.ssid, req_data->ssid,
strnlen(req_data->ssid, sizeof(wifi_cfg->sta.ssid)));
memcpy((char *) wifi_cfg->sta.password, req_data->password,
strnlen(req_data->password, sizeof(wifi_cfg->sta.password)));
/* Using strncpy allows the max SSID length to be 32 bytes (as per 802.11 standard).
* But this doesn't guarantee that the saved SSID will be null terminated, because
* wifi_cfg->sta.ssid is also 32 bytes long (without extra 1 byte for null character).
* Although, this is not a matter for concern because esp_wifi library reads the SSID
* upto 32 bytes in absence of null termination */
strncpy((char *) wifi_cfg->sta.ssid, req_data->ssid, sizeof(wifi_cfg->sta.ssid));
strlcpy((char *) wifi_cfg->sta.password, req_data->password, sizeof(wifi_cfg->sta.password));
return ESP_OK;
}

View File

@ -0,0 +1 @@
CONFIG_ENABLE_UNIFIED_PROVISIONING=y

View File

@ -2,9 +2,5 @@
# in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
# (Not part of the boilerplate)
# This example uses an extra component for common functions such as Wi-Fi and Ethernet connection.
set(EXTRA_COMPONENT_DIRS $ENV{IDF_PATH}/examples/common_components/protocol_examples_common)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(softap_prov)

View File

@ -5,7 +5,5 @@
PROJECT_NAME := softap_prov
EXTRA_COMPONENT_DIRS = $(IDF_PATH)/examples/common_components/protocol_examples_common
include $(IDF_PATH)/make/project.mk

View File

@ -1,4 +1,6 @@
# SoftAP + HTTPD based Provisioning Example
# SoftAP + HTTPD based Provisioning Example (Legacy)
> Note: It is recommended to use the new `wifi_prov_mgr` example which is based on the simpler `wifi_provisioning` APIs. Check this example only if you wish to use lower level provisioning and protocomm APIs and want more control over the handlers.
(See the README.md file in the upper level 'examples' directory for more information about examples.)
@ -42,11 +44,9 @@ To provision the device running this example, the `esp_prov.py` script needs to
### Configure the project
```
make menuconfig
idf.py menuconfig
```
* Set serial port under Serial Flasher Options.
* Under Example Configuration set the following :
* SoftAP SSID (Defaults to PROV_<MACID>)
* SoftAP Password (Defaults to PROV_PASS)
@ -58,7 +58,7 @@ make menuconfig
Build the project and flash it to the board, then run monitor tool to view serial output:
```
make -j4 flash monitor
idf.py -p PORT flash monitor
```
(To exit the serial monitor, type ``Ctrl-]``.)
@ -81,7 +81,7 @@ I (519482) tcpip_adapter: softAP assign IP to station,IP is: 192.168.4.2
In a separate terminal run the `esp_prov.py` script under `$IDP_PATH/tools/esp_prov` directory (please replace `myssid` and `mypassword` with the credentials of the AP to which the device is supposed to connect to after provisioning). The SoftAP endpoint corresponds to the IP and port of the device on the SoftAP network, but this is usually same as the default value and may be left out. Assuming default example configuration, the script should be run as follows :
```
python esp_prov.py --ssid myssid --passphrase mypassword --sec_ver 1 --pop abcd1234 --transport softap --softap_endpoint 192.168.4.1:80
python esp_prov.py --transport softap --service_name "192.168.4.1:80" --sec_ver 1 --pop abcd1234 --ssid myssid --passphrase mypassword
```
Above command will perform the provisioning steps, and the monitor log should display something like this :
@ -145,7 +145,7 @@ It means the Wi-Fi credentials were already set by some other application flashe
```
make erase_flash
make -j4 flash monitor
idf.py -p PORT flash monitor
```
Or, enable `Reset Provisioning` option under `Example Configuration` under menuconfig. But this will erase the saved Wi-Fi credentials every time the device boots, so this is not the preferred solution.

View File

@ -0,0 +1,4 @@
idf_component_register(SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c"
INCLUDE_DIRS ".")

View File

@ -0,0 +1,59 @@
menu "Example Configuration"
config EXAMPLE_SSID_SET_MAC
bool "Use MAC as SSID"
default y
help
Set SoftAP SSID as PROV_<MAC>.
config EXAMPLE_SSID
string "Wi-Fi SSID"
default "PROV_SSID"
depends on !EXAMPLE_SSID_SET_MAC
help
SSID (network name) for the example to connect to.
config EXAMPLE_PASS
string "Wi-Fi Password"
default "PROV_PASS"
help
Wi-Fi password (WPA or WPA2) for the example to use.
config EXAMPLE_USE_SEC_1
bool
default y
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config EXAMPLE_USE_POP
bool
depends on EXAMPLE_USE_SEC_1
default y
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config EXAMPLE_POP
string "Proof-of-possession"
default "abcd1234"
depends on EXAMPLE_USE_POP
config EXAMPLE_RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the Wi-Fi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -12,19 +12,19 @@
#include <freertos/task.h>
#include <esp_system.h>
#include <esp_wifi.h>
#include <esp_event_loop.h>
#include <esp_event.h>
#include <esp_log.h>
#include <nvs_flash.h>
#include "esp_netif.h"
#include <lwip/err.h>
#include <lwip/sys.h>
#include "app_prov.h"
static const char *TAG = "app";
#define EXAMPLE_AP_RECONN_ATTEMPTS CONFIG_EXAMPLE_AP_RECONN_ATTEMPTS
static const char *TAG = "app";
static void event_handler(void* arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
@ -41,66 +41,46 @@ static void event_handler(void* arg, esp_event_base_t event_base,
ESP_LOGI(TAG,"connect to the AP fail");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
ESP_LOGI(TAG, "got ip:%s",
ip4addr_ntoa(&event->ip_info.ip));
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
}
}
static void wifi_init_sta()
static void wifi_init_sta(void)
{
/* Set our event handling */
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, event_handler, NULL));
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK(esp_wifi_start() );
/* Start Wi-Fi in station mode with credentials set during provisioning */
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
}
void app_main()
static void start_softap_provisioning(void)
{
/* Security version */
int security = 0;
/* Proof of possession */
const protocomm_security_pop_t *pop = NULL;
#ifdef CONFIG_USE_SEC_1
#ifdef CONFIG_EXAMPLE_USE_SEC_1
security = 1;
#endif
/* Having proof of possession is optional */
#ifdef CONFIG_USE_POP
#ifdef CONFIG_EXAMPLE_USE_POP
const static protocomm_security_pop_t app_pop = {
.data = (uint8_t *) CONFIG_POP,
.len = (sizeof(CONFIG_POP)-1)
.data = (uint8_t *) CONFIG_EXAMPLE_POP,
.len = (sizeof(CONFIG_EXAMPLE_POP)-1)
};
pop = &app_pop;
#endif
/* Initialize networking stack */
tcpip_adapter_init();
/* Create default event loop needed by the
* main app and the provisioning service */
ESP_ERROR_CHECK(esp_event_loop_create_default());
/* Initialize NVS needed by Wi-Fi */
ESP_ERROR_CHECK(nvs_flash_init());
/* Check if device is provisioned */
bool provisioned;
if (app_prov_is_provisioned(&provisioned) != ESP_OK) {
ESP_LOGE(TAG, "Error getting device provisioning state");
return;
}
if (provisioned == false) {
/* If not provisioned, start provisioning via soft AP */
ESP_LOGI(TAG, "Starting WiFi SoftAP provisioning");
const char *ssid = NULL;
#ifdef CONFIG_SOFTAP_SSID
ssid = CONFIG_SOFTAP_SSID;
#ifdef CONFIG_EXAMPLE_SSID
ssid = CONFIG_EXAMPLE_SSID;
#else
uint8_t eth_mac[6];
esp_wifi_get_mac(WIFI_IF_STA, eth_mac);
@ -112,11 +92,40 @@ void app_main()
ssid = ssid_with_mac;
#endif
app_prov_start_softap_provisioning(ssid, CONFIG_SOFTAP_PASS,
security, pop);
ESP_ERROR_CHECK(app_prov_start_softap_provisioning(
ssid, CONFIG_EXAMPLE_PASS, security, pop));
}
void app_main(void)
{
/* Initialize networking stack */
ESP_ERROR_CHECK(esp_netif_init());
/* Create default event loop needed by the
* main app and the provisioning service */
ESP_ERROR_CHECK(esp_event_loop_create_default());
/* Initialize NVS needed by Wi-Fi */
ESP_ERROR_CHECK(nvs_flash_init());
/* Initialize Wi-Fi including netif with default config */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
/* Check if device is provisioned */
bool provisioned;
if (app_prov_is_provisioned(&provisioned) != ESP_OK) {
ESP_LOGE(TAG, "Error getting device provisioning state");
return;
}
if (provisioned == false) {
/* If not provisioned, start provisioning via soft AP */
ESP_LOGI(TAG, "Starting WiFi SoftAP provisioning");
start_softap_provisioning();
} else {
/* Start WiFi station with credentials set during provisioning */
ESP_LOGI(TAG, "Starting WiFi station");
wifi_init_sta(NULL);
wifi_init_sta();
}
}

View File

@ -13,6 +13,7 @@
#include <esp_wifi.h>
#include <nvs_flash.h>
#include <nvs.h>
#include <esp_event.h>
#include <task.h>
#include <stdlib.h>
@ -27,6 +28,9 @@
static const char *TAG = "app_prov";
/* Handler for catching WiFi events */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t base, int id, void* data);
/* Handlers for wifi_config provisioning endpoint */
extern wifi_prov_config_handlers_t wifi_prov_handlers;
@ -103,6 +107,10 @@ static void app_prov_stop_service(void)
protocomm_httpd_stop(g_prov->pc);
/* Delete protocomm instance */
protocomm_delete(g_prov->pc);
/* Remove event handler */
esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler);
esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler);
}
/* Task spawned by timer callback */
@ -131,33 +139,24 @@ static void _stop_prov_cb(void * arg)
xTaskCreate(&stop_prov_task, "stop_prov", 2048, NULL, tskIDLE_PRIORITY, NULL);
}
/* Event handler for starting/stopping provisioning.
* To be called from within the context of the main
* event handler.
*/
esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
/* Event handler for starting/stopping provisioning */
static void app_prov_event_handler(void* handler_arg, esp_event_base_t event_base,
int event_id, void* event_data)
{
/* For accessing reason codes in case of disconnection */
system_event_info_t *info = &event->event_info;
/* If pointer to provisioning application data is NULL
* then provisioning is not running, therefore return without
* error */
* then provisioning is not running */
if (!g_prov) {
return ESP_OK;
return;
}
switch(event->event_id) {
case SYSTEM_EVENT_STA_START:
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
ESP_LOGI(TAG, "STA Start");
/* Once configuration is received by protocomm server,
* device is restarted as both AP and Station.
* Once station starts, wait for connection to
* establish with configured host SSID and password */
/* Once configuration is received through protocomm,
* device is started as station. Once station starts,
* wait for connection to establish with configured
* host SSID and password */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
break;
case SYSTEM_EVENT_STA_GOT_IP:
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ESP_LOGI(TAG, "STA Got IP");
/* Station got IP. That means configuration is successful.
* Schedule timer to stop provisioning app after 30 seconds. */
@ -174,16 +173,16 @@ esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
* signaling a failure in provisioning. */
esp_timer_start_once(g_prov->timer, 30000*1000U);
}
break;
case SYSTEM_EVENT_STA_DISCONNECTED:
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
ESP_LOGE(TAG, "STA Disconnected");
/* Station couldn't connect to configured host SSID */
g_prov->wifi_state = WIFI_PROV_STA_DISCONNECTED;
ESP_LOGE(TAG, "Disconnect reason : %d", info->disconnected.reason);
wifi_event_sta_disconnected_t* disconnected = (wifi_event_sta_disconnected_t*) event_data;
ESP_LOGE(TAG, "Disconnect reason : %d", disconnected->reason);
/* Set code corresponding to the reason for disconnection */
switch (info->disconnected.reason) {
switch (disconnected->reason) {
case WIFI_REASON_AUTH_EXPIRE:
case WIFI_REASON_4WAY_HANDSHAKE_TIMEOUT:
case WIFI_REASON_BEACON_TIMEOUT:
@ -198,21 +197,16 @@ esp_err_t app_prov_event_handler(void *ctx, system_event_t *event)
g_prov->wifi_disconnect_reason = WIFI_PROV_STA_AP_NOT_FOUND;
break;
default:
if (info->disconnected.reason == WIFI_REASON_BASIC_RATE_NOT_SUPPORT) {
/*Switch to 802.11 bgn mode */
esp_wifi_set_protocol(ESP_IF_WIFI_STA, WIFI_PROTOCOL_11B | WIFI_PROTOCOL_11G | WIFI_PROTOCOL_11N);
}
/* If none of the expected reasons,
* retry connecting to host SSID */
g_prov->wifi_state = WIFI_PROV_STA_CONNECTING;
if (disconnected->reason == WIFI_REASON_BASIC_RATE_NOT_SUPPORT) {
/*Switch to 802.11 bgn mode */
esp_wifi_set_protocol(ESP_IF_WIFI_STA, WIFI_PROTOCOL_11B | WIFI_PROTOCOL_11G | WIFI_PROTOCOL_11N);
}
esp_wifi_connect();
}
break;
default:
break;
}
return ESP_OK;
}
esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state)
@ -243,21 +237,10 @@ esp_err_t app_prov_is_provisioned(bool *provisioned)
{
*provisioned = false;
#ifdef CONFIG_RESET_PROVISIONED
#ifdef CONFIG_EXAMPLE_RESET_PROVISIONED
nvs_flash_erase();
#endif
if (nvs_flash_init() != ESP_OK) {
ESP_LOGE(TAG, "Failed to init NVS");
return ESP_FAIL;
}
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
if (esp_wifi_init(&cfg) != ESP_OK) {
ESP_LOGE(TAG, "Failed to init wifi");
return ESP_FAIL;
}
/* Get WiFi Station configuration */
wifi_config_t wifi_cfg;
if (esp_wifi_get_config(ESP_IF_WIFI_STA, &wifi_cfg) != ESP_OK) {
@ -305,14 +288,6 @@ esp_err_t app_prov_configure_sta(wifi_config_t *wifi_cfg)
static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
{
/* Initialize WiFi with default configuration */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
esp_err_t err = esp_wifi_init(&cfg);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to init WiFi : %d", err);
return err;
}
/* Build WiFi configuration for AP mode */
wifi_config_t wifi_config = {
.ap = {
@ -320,19 +295,18 @@ static esp_err_t start_wifi_ap(const char *ssid, const char *pass)
},
};
strncpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
wifi_config.ap.ssid_len = strlen(ssid);
strlcpy((char *) wifi_config.ap.ssid, ssid, sizeof(wifi_config.ap.ssid));
if (strlen(pass) == 0) {
memset(wifi_config.ap.password, 0, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_OPEN;
} else {
strncpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
strlcpy((char *) wifi_config.ap.password, pass, sizeof(wifi_config.ap.password));
wifi_config.ap.authmode = WIFI_AUTH_WPA_WPA2_PSK;
}
/* Start WiFi in AP mode with configuration built above */
err = esp_wifi_set_mode(WIFI_MODE_AP);
esp_err_t err = esp_wifi_set_mode(WIFI_MODE_AP);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set WiFi mode : %d", err);
return err;
@ -385,6 +359,18 @@ esp_err_t app_prov_start_softap_provisioning(const char *ssid, const char *pass,
return err;
}
err = esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register WiFi event handler");
return err;
}
err = esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, app_prov_event_handler, NULL);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to register IP event handler");
return err;
}
/* Start WiFi softAP with specified ssid and password */
err = start_wifi_ap(ssid, pass);
if (err != ESP_OK) {

View File

@ -9,7 +9,7 @@
#pragma once
#include <esp_event_loop.h>
#include <esp_event.h>
#include <protocomm_security.h>
#include <wifi_provisioning/wifi_config.h>
@ -42,21 +42,6 @@ esp_err_t app_prov_get_wifi_state(wifi_prov_sta_state_t* state);
*/
esp_err_t app_prov_get_wifi_disconnect_reason(wifi_prov_sta_fail_reason_t* reason);
/**
* @brief Event handler for provisioning app
*
* This is called from the main event handler and controls the
* provisioning application, depeding on WiFi events
*
* @param[in] ctx Event context data
* @param[in] event Event info
*
* @return
* - ESP_OK : Event handled successfully
* - ESP_FAIL : Failed to start server on event AP start
*/
esp_err_t app_prov_event_handler(void *ctx, system_event_t *event);
/**
* @brief Checks if device is provisioned
* *

View File

@ -15,7 +15,7 @@
#include <esp_log.h>
#include <esp_wifi.h>
#include <tcpip_adapter.h>
#include <esp_netif.h>
#include <wifi_provisioning/wifi_config.h>
@ -98,10 +98,14 @@ static esp_err_t set_config_handler(const wifi_prov_config_set_data_t *req_data,
ESP_LOGI(TAG, "WiFi Credentials Received : \n\tssid %s \n\tpassword %s",
req_data->ssid, req_data->password);
memcpy((char *) wifi_cfg->sta.ssid, req_data->ssid,
strnlen(req_data->ssid, sizeof(wifi_cfg->sta.ssid)));
memcpy((char *) wifi_cfg->sta.password, req_data->password,
strnlen(req_data->password, sizeof(wifi_cfg->sta.password)));
/* Using strncpy allows the max SSID length to be 32 bytes (as per 802.11 standard).
* But this doesn't guarantee that the saved SSID will be null terminated, because
* wifi_cfg->sta.ssid is also 32 bytes long (without extra 1 byte for null character).
* Although, this is not a matter for concern because esp_wifi library reads the SSID
* upto 32 bytes in absence of null termination */
strncpy((char *) wifi_cfg->sta.ssid, req_data->ssid, sizeof(wifi_cfg->sta.ssid));
strlcpy((char *) wifi_cfg->sta.password, req_data->password, sizeof(wifi_cfg->sta.password));
return ESP_OK;
}

View File

@ -0,0 +1 @@
CONFIG_ENABLE_UNIFIED_PROVISIONING=y

View File

@ -0,0 +1,116 @@
#!/usr/bin/env python
#
# Copyright 2018 Espressif Systems (Shanghai) PTE LTD
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import re
import os
import time
import ttfw_idf
import esp_prov
import wifi_tools
# Have esp_prov throw exception
esp_prov.config_throw_except = True
@ttfw_idf.idf_example_test(env_tag="Example_WIFI_BT")
def test_examples_provisioning_softap(env, extra_data):
# Acquire DUT
dut1 = env.get_dut("softap_prov", "examples/provisioning/legacy/softap_prov", dut_class=ttfw_idf.ESP32DUT)
# Get binary file
binary_file = os.path.join(dut1.app.binary_path, "softap_prov.bin")
bin_size = os.path.getsize(binary_file)
ttfw_idf.log_performance("softap_prov_bin_size", "{}KB".format(bin_size // 1024))
ttfw_idf.check_performance("softap_prov_bin_size", bin_size // 1024, dut1.TARGET)
# Upload binary and start testing
dut1.start_app()
# Parse IP address of STA
dut1.expect("Starting WiFi SoftAP provisioning", timeout=60)
[ssid, password] = dut1.expect(re.compile(r"SoftAP Provisioning started with SSID '(\S+)', Password '(\S+)'"), timeout=30)
iface = wifi_tools.get_wiface_name()
if iface is None:
raise RuntimeError("Failed to get Wi-Fi interface on host")
print("Interface name : " + iface)
print("SoftAP SSID : " + ssid)
print("SoftAP Password : " + password)
ctrl = wifi_tools.wpa_cli(iface, reset_on_exit=True)
print("Connecting to DUT SoftAP...")
ip = ctrl.connect(ssid, password)
got_ip = dut1.expect(re.compile(r"DHCP server assigned IP to a station, IP is: (\d+.\d+.\d+.\d+)"), timeout=30)[0]
if ip != got_ip:
raise RuntimeError("SoftAP connected to another host! " + ip + "!=" + got_ip)
print("Connected to DUT SoftAP")
print("Starting Provisioning")
verbose = False
protover = "V0.1"
secver = 1
pop = "abcd1234"
provmode = "softap"
ap_ssid = "myssid"
ap_password = "mypassword"
softap_endpoint = ip.split('.')[0] + "." + ip.split('.')[1] + "." + ip.split('.')[2] + ".1:80"
print("Getting security")
security = esp_prov.get_security(secver, pop, verbose)
if security is None:
raise RuntimeError("Failed to get security")
print("Getting transport")
transport = esp_prov.get_transport(provmode, softap_endpoint)
if transport is None:
raise RuntimeError("Failed to get transport")
print("Verifying protocol version")
if not esp_prov.version_match(transport, protover):
raise RuntimeError("Mismatch in protocol version")
print("Starting Session")
if not esp_prov.establish_session(transport, security):
raise RuntimeError("Failed to start session")
print("Sending Wifi credential to DUT")
if not esp_prov.send_wifi_config(transport, security, ap_ssid, ap_password):
raise RuntimeError("Failed to send Wi-Fi config")
print("Applying config")
if not esp_prov.apply_wifi_config(transport, security):
raise RuntimeError("Failed to send apply config")
success = False
while True:
time.sleep(5)
print("Wi-Fi connection state")
ret = esp_prov.get_wifi_config(transport, security)
if (ret == 1):
continue
elif (ret == 0):
print("Provisioning was successful")
success = True
break
if not success:
raise RuntimeError("Provisioning failed")
if __name__ == '__main__':
test_examples_provisioning_softap()

View File

@ -1,6 +0,0 @@
set(COMPONENT_SRCS "app_main.c"
"app_prov.c"
"app_prov_handlers.c")
set(COMPONENT_ADD_INCLUDEDIRS ".")
register_component()

View File

@ -1,59 +0,0 @@
menu "Example Configuration"
config SOFTAP_SSID_SET_MAC
bool "Use MAC as SSID"
default y
help
Set SoftAP SSID as PROV_<MAC>.
config SOFTAP_SSID
string "WiFi SSID"
default "PROV_SSID"
depends on !SOFTAP_SSID_SET_MAC
help
SSID (network name) for the example to connect to.
config SOFTAP_PASS
string "WiFi Password"
default "PROV_PASS"
help
WiFi password (WPA or WPA2) for the example to use.
config USE_SEC_1
bool
default y
prompt "Use Security Version 1"
help
Security version 1 used Curve25519 key exchange for establishing
secure session between device and client during provisioning
config USE_POP
bool
depends on USE_SEC_1
default y
prompt "Use proof-of-possession"
help
Proof-of-possession can be optionally used to prove that the device is indeed
in possession of the user who is provisioning the device. This proof-of-possession
is internally used to generate the shared secret through key exchange.
config POP
string "Proof-of-possession"
default "abcd1234"
depends on USE_POP
config RESET_PROVISIONED
bool
default n
prompt "Reset provisioned status of the device"
help
This erases the NVS to reset provisioned status of the device on every reboot.
Provisioned status is determined by the WiFi STA configuration, saved on the NVS.
config EXAMPLE_AP_RECONN_ATTEMPTS
int "Maximum AP connection attempts"
default 5
help
Set the maximum connection attempts to perform when connecting to a Wi-Fi AP.
endmenu

View File

@ -1,3 +0,0 @@
CONFIG_ENABLE_UNIFIED_PROVISIONING=y
CONFIG_LWIP_NETIF_LOOPBACK=y
CONFIG_LWIP_LOOPBACK_MAX_PBUFS=1

View File

@ -1,98 +0,0 @@
# Copyright 2018 Espressif Systems (Shanghai) PTE LTD
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import dbus
import dbus.mainloop.glib
import netifaces
import time
def get_wiface_name():
for iface in netifaces.interfaces():
if iface.startswith('w'):
return iface
return None
def get_wiface_IPv4(iface):
try:
[info] = netifaces.ifaddresses(iface)[netifaces.AF_INET]
return info['addr']
except KeyError:
return None
class wpa_cli:
def __init__(self, iface, reset_on_exit = False):
self.iface_name = iface
self.iface_obj = None
self.iface_ifc = None
self.old_network = None
self.new_network = None
self.connected = False
self.reset_on_exit = reset_on_exit
dbus.mainloop.glib.DBusGMainLoop(set_as_default=True)
bus = dbus.SystemBus()
service = dbus.Interface(bus.get_object("fi.w1.wpa_supplicant1", "/fi/w1/wpa_supplicant1"), "fi.w1.wpa_supplicant1")
paths = service.Get("fi.w1.wpa_supplicant1", "Interfaces", dbus_interface='org.freedesktop.DBus.Properties')
iface_path = service.GetInterface(self.iface_name)
self.iface_obj = bus.get_object("fi.w1.wpa_supplicant1", iface_path)
self.iface_ifc = dbus.Interface(self.iface_obj, "fi.w1.wpa_supplicant1.Interface")
if self.iface_ifc == None:
raise RuntimeError('supplicant : Failed to fetch interface')
self.old_network = self.iface_obj.Get("fi.w1.wpa_supplicant1.Interface", "CurrentNetwork", dbus_interface='org.freedesktop.DBus.Properties')
if self.old_network == '/':
self.old_network = None
else:
self.connected = True
def connect(self, ssid, password):
if self.connected == True:
self.iface_ifc.Disconnect()
self.connected = False
if self.new_network != None:
self.iface_ifc.RemoveNetwork(self.new_network)
self.new_network = self.iface_ifc.AddNetwork({"ssid": ssid, "psk": password})
self.iface_ifc.SelectNetwork(self.new_network)
ip = None
retry = 10
while retry > 0:
time.sleep(5)
ip = get_wiface_IPv4(self.iface_name)
if ip != None:
self.connected = True
return ip
retry -= 1
self.reset()
raise RuntimeError('wpa_cli : Connection failed')
def reset(self):
if self.iface_ifc != None:
if self.connected == True:
self.iface_ifc.Disconnect()
self.connected = False
if self.new_network != None:
self.iface_ifc.RemoveNetwork(self.new_network)
self.new_network = None
if self.old_network != None:
self.iface_ifc.SelectNetwork(self.old_network)
self.old_network = None
def __del__(self):
if self.reset_on_exit == True:
self.reset()