Files
2017-03-13 14:35:34 +09:00

64 lines
2.5 KiB
Python

import torch
import torch.nn as nn
import torchvision.models as models
from torch.nn.utils.rnn import pack_padded_sequence
from torch.autograd import Variable
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
"""Load pretrained ResNet-152 and replace top fc layer."""
super(EncoderCNN, self).__init__()
self.resnet = models.resnet152(pretrained=True)
# For efficient memory usage.
for param in self.resnet.parameters():
param.requires_grad = False
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
self.init_weights()
def init_weights(self):
self.resnet.fc.weight.data.uniform_(-0.1, 0.1)
self.resnet.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
features = self.resnet(images)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
"""Set hyper-parameters and build layers."""
super(DecoderRNN, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
self.linear = nn.Linear(hidden_size, vocab_size)
def init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
self.linear.weigth.data.uniform_(-0.1, 0.1)
self.linear.bias.data.fill_(0)
def forward(self, features, captions, lengths):
"""Decode image feature vectors and generate caption."""
embeddings = self.embed(captions)
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
packed = pack_padded_sequence(embeddings, lengths, batch_first=True)
hiddens, _ = self.lstm(packed)
outputs = self.linear(hiddens[0])
return outputs
def sample(self, feature, state):
"""Sample a caption for given a image feature."""
sampled_ids = []
input = feature.unsqueeze(1)
for i in range(20):
hidden, state = self.lstm(input, state) # (1, 1, hidden_size)
output = self.linear(hidden.view(-1, self.hidden_size)) # (1, vocab_size)
predicted = output.max(1)[1]
sampled_ids.append(predicted)
input = self.embed(predicted)
return sampled_ids