import torch import torch.nn as nn import torchvision.models as models from torch.nn.utils.rnn import pack_padded_sequence from torch.autograd import Variable class EncoderCNN(nn.Module): def __init__(self, embed_size): """Load pretrained ResNet-152 and replace top fc layer.""" super(EncoderCNN, self).__init__() self.resnet = models.resnet152(pretrained=True) # For efficient memory usage. for param in self.resnet.parameters(): param.requires_grad = False self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size) self.init_weights() def init_weights(self): self.resnet.fc.weight.data.uniform_(-0.1, 0.1) self.resnet.fc.bias.data.fill_(0) def forward(self, images): """Extract image feature vectors.""" features = self.resnet(images) return features class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers): """Set hyper-parameters and build layers.""" super(DecoderRNN, self).__init__() self.embed_size = embed_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers) self.linear = nn.Linear(hidden_size, vocab_size) def init_weights(self): self.embed.weight.data.uniform_(-0.1, 0.1) self.linear.weigth.data.uniform_(-0.1, 0.1) self.linear.bias.data.fill_(0) def forward(self, features, captions, lengths): """Decode image feature vectors and generate caption.""" embeddings = self.embed(captions) embeddings = torch.cat((features.unsqueeze(1), embeddings), 1) packed = pack_padded_sequence(embeddings, lengths, batch_first=True) hiddens, _ = self.lstm(packed) outputs = self.linear(hiddens[0]) return outputs def sample(self, feature, state): """Sample a caption for given a image feature.""" sampled_ids = [] input = feature.unsqueeze(1) for i in range(20): hidden, state = self.lstm(input, state) # (1, 1, hidden_size) output = self.linear(hidden.view(-1, self.hidden_size)) # (1, vocab_size) predicted = output.max(1)[1] sampled_ids.append(predicted) input = self.embed(predicted) return sampled_ids