mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-23 17:33:36 +08:00
97 lines
3.4 KiB
Python
97 lines
3.4 KiB
Python
import torch
|
|
import torchvision.transforms as transforms
|
|
import torch.utils.data as data
|
|
import os
|
|
import pickle
|
|
import numpy as np
|
|
import nltk
|
|
from PIL import Image
|
|
from vocab import Vocabulary
|
|
from pycocotools.coco import COCO
|
|
|
|
|
|
class CocoDataset(data.Dataset):
|
|
"""COCO Custom Dataset compatible with torch.utils.data.DataLoader."""
|
|
def __init__(self, root, json, vocab, transform=None):
|
|
"""
|
|
Args:
|
|
root: image directory.
|
|
json: coco annotation file path.
|
|
vocab: vocabulary wrapper.
|
|
transform: transformer for image.
|
|
"""
|
|
self.root = root
|
|
self.coco = COCO(json)
|
|
self.ids = list(self.coco.anns.keys())
|
|
self.vocab = vocab
|
|
self.transform = transform
|
|
|
|
def __getitem__(self, index):
|
|
"""This function should return one data pair(image and caption)."""
|
|
coco = self.coco
|
|
vocab = self.vocab
|
|
ann_id = self.ids[index]
|
|
caption = coco.anns[ann_id]['caption']
|
|
img_id = coco.anns[ann_id]['image_id']
|
|
path = coco.loadImgs(img_id)[0]['file_name']
|
|
|
|
image = Image.open(os.path.join(self.root, path)).convert('RGB')
|
|
if self.transform is not None:
|
|
image = self.transform(image)
|
|
|
|
# Convert caption (string) to word ids.
|
|
tokens = nltk.tokenize.word_tokenize(str(caption).lower())
|
|
caption = []
|
|
caption.append(vocab('<start>'))
|
|
caption.extend([vocab(token) for token in tokens])
|
|
caption.append(vocab('<end>'))
|
|
target = torch.Tensor(caption)
|
|
return image, target
|
|
|
|
def __len__(self):
|
|
return len(self.ids)
|
|
|
|
|
|
def collate_fn(data):
|
|
"""Build mini-batch tensors from a list of (image, caption) tuples.
|
|
Args:
|
|
data: list of (image, caption) tuple.
|
|
- image: torch tensor of shape (3, 256, 256).
|
|
- caption: torch tensor of shape (?); variable length.
|
|
|
|
Returns:
|
|
images: torch tensor of shape (batch_size, 3, 256, 256).
|
|
targets: torch tensor of shape (batch_size, padded_length).
|
|
lengths: list; valid length for each padded caption.
|
|
"""
|
|
# Sort a data list by caption length
|
|
data.sort(key=lambda x: len(x[1]), reverse=True)
|
|
images, captions = zip(*data)
|
|
|
|
# Merge images (convert tuple of 3D tensor to 4D tensor)
|
|
images = torch.stack(images, 0)
|
|
|
|
# Merget captions (convert tuple of 1D tensor to 2D tensor)
|
|
lengths = [len(cap) for cap in captions]
|
|
targets = torch.zeros(len(captions), max(lengths)).long()
|
|
for i, cap in enumerate(captions):
|
|
end = lengths[i]
|
|
targets[i, :end] = cap[:end]
|
|
return images, targets, lengths
|
|
|
|
|
|
def get_loader(root, json, vocab, transform, batch_size=100, shuffle=True, num_workers=2):
|
|
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
|
|
# COCO custom dataset
|
|
coco = CocoDataset(root=root,
|
|
json=json,
|
|
vocab = vocab,
|
|
transform=transform)
|
|
|
|
# Data loader
|
|
data_loader = torch.utils.data.DataLoader(dataset=coco,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=num_workers,
|
|
collate_fn=collate_fn)
|
|
return data_loader |