mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-05 00:24:02 +08:00
image captionig added
This commit is contained in:
97
tutorials/09 - Image Captioning/data.py
Normal file
97
tutorials/09 - Image Captioning/data.py
Normal file
@ -0,0 +1,97 @@
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
import torch.utils.data as data
|
||||
import os
|
||||
import pickle
|
||||
import numpy as np
|
||||
import nltk
|
||||
from PIL import Image
|
||||
from vocab import Vocabulary
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
|
||||
class CocoDataset(data.Dataset):
|
||||
"""COCO Custom Dataset compatible with torch.utils.data.DataLoader."""
|
||||
def __init__(self, root, json, vocab, transform=None):
|
||||
"""
|
||||
Args:
|
||||
root: image directory.
|
||||
json: coco annotation file path.
|
||||
vocab: vocabulary wrapper.
|
||||
transform: transformer for image.
|
||||
"""
|
||||
self.root = root
|
||||
self.coco = COCO(json)
|
||||
self.ids = list(self.coco.anns.keys())
|
||||
self.vocab = vocab
|
||||
self.transform = transform
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""This function should return one data pair(image and caption)."""
|
||||
coco = self.coco
|
||||
vocab = self.vocab
|
||||
ann_id = self.ids[index]
|
||||
caption = coco.anns[ann_id]['caption']
|
||||
img_id = coco.anns[ann_id]['image_id']
|
||||
path = coco.loadImgs(img_id)[0]['file_name']
|
||||
|
||||
image = Image.open(os.path.join(self.root, path)).convert('RGB')
|
||||
if self.transform is not None:
|
||||
image = self.transform(image)
|
||||
|
||||
# Convert caption (string) to word ids.
|
||||
tokens = nltk.tokenize.word_tokenize(str(caption).lower())
|
||||
caption = []
|
||||
caption.append(vocab('<start>'))
|
||||
caption.extend([vocab(token) for token in tokens])
|
||||
caption.append(vocab('<end>'))
|
||||
target = torch.Tensor(caption)
|
||||
return image, target
|
||||
|
||||
def __len__(self):
|
||||
return len(self.ids)
|
||||
|
||||
|
||||
def collate_fn(data):
|
||||
"""Build mini-batch tensors from a list of (image, caption) tuples.
|
||||
Args:
|
||||
data: list of (image, caption) tuple.
|
||||
- image: torch tensor of shape (3, 256, 256).
|
||||
- caption: torch tensor of shape (?); variable length.
|
||||
|
||||
Returns:
|
||||
images: torch tensor of shape (batch_size, 3, 256, 256).
|
||||
targets: torch tensor of shape (batch_size, padded_length).
|
||||
lengths: list; valid length for each padded caption.
|
||||
"""
|
||||
# Sort a data list by caption length
|
||||
data.sort(key=lambda x: len(x[1]), reverse=True)
|
||||
images, captions = zip(*data)
|
||||
|
||||
# Merge images (convert tuple of 3D tensor to 4D tensor)
|
||||
images = torch.stack(images, 0)
|
||||
|
||||
# Merget captions (convert tuple of 1D tensor to 2D tensor)
|
||||
lengths = [len(cap) for cap in captions]
|
||||
targets = torch.zeros(len(captions), max(lengths)).long()
|
||||
for i, cap in enumerate(captions):
|
||||
end = lengths[i]
|
||||
targets[i, :end] = cap[:end]
|
||||
return images, targets, lengths
|
||||
|
||||
|
||||
def get_loader(root, json, vocab, transform, batch_size=100, shuffle=True, num_workers=2):
|
||||
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
|
||||
# COCO custom dataset
|
||||
coco = CocoDataset(root=root,
|
||||
json=json,
|
||||
vocab = vocab,
|
||||
transform=transform)
|
||||
|
||||
# Data loader
|
||||
data_loader = torch.utils.data.DataLoader(dataset=coco,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=num_workers,
|
||||
collate_fn=collate_fn)
|
||||
return data_loader
|
35
tutorials/09 - Image Captioning/resize.py
Normal file
35
tutorials/09 - Image Captioning/resize.py
Normal file
@ -0,0 +1,35 @@
|
||||
from PIL import Image
|
||||
import os
|
||||
|
||||
|
||||
def resize_image(image, size):
|
||||
"""Resizes an image to the given size."""
|
||||
return image.resize(size, Image.ANTIALIAS)
|
||||
|
||||
def resize_images(image_dir, output_dir, size):
|
||||
"""Resizes the images in the image_dir and save into the output_dir."""
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
|
||||
images = os.listdir(image_dir)
|
||||
num_images = len(images)
|
||||
for i, image in enumerate(images):
|
||||
with open(os.path.join(image_dir, image), 'r+b') as f:
|
||||
with Image.open(f) as img:
|
||||
img = resize_image(img, size)
|
||||
img.save(
|
||||
os.path.join(output_dir, image), img.format)
|
||||
if i % 100 == 0:
|
||||
print ('[%d/%d] Resized the images and saved into %s.'
|
||||
%(i, num_images, output_dir))
|
||||
|
||||
def main():
|
||||
splits = ['train', 'val']
|
||||
for split in splits:
|
||||
image_dir = './data/%s2014/' %split
|
||||
output_dir = './data/%s2014resized' %split
|
||||
resize_images(image_dir, output_dir, (256, 256))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
69
tutorials/09 - Image Captioning/train.py
Normal file
69
tutorials/09 - Image Captioning/train.py
Normal file
@ -0,0 +1,69 @@
|
||||
from data import get_loader
|
||||
from vocab import Vocabulary
|
||||
from models import EncoderCNN, DecoderRNN
|
||||
from torch.autograd import Variable
|
||||
from torch.nn.utils.rnn import pack_padded_sequence
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import torchvision.transforms as T
|
||||
import pickle
|
||||
|
||||
# Hyper Parameters
|
||||
num_epochs = 5
|
||||
batch_size = 100
|
||||
embed_size = 128
|
||||
hidden_size = 512
|
||||
num_layers = 1
|
||||
learning_rate = 0.001
|
||||
train_image_path = './data/train2014resized/'
|
||||
train_json_path = './data/annotations/captions_train2014.json'
|
||||
|
||||
# Image Preprocessing
|
||||
transform = T.Compose([
|
||||
T.RandomHorizontalFlip(),
|
||||
T.ToTensor(),
|
||||
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||
|
||||
# Load Vocabulary Wrapper
|
||||
with open('./data/vocab.pkl', 'rb') as f:
|
||||
vocab = pickle.load(f)
|
||||
|
||||
# Build Dataset Loader
|
||||
train_loader = get_loader(train_image_path, train_json_path, vocab, transform,
|
||||
batch_size=batch_size, shuffle=True, num_workers=2)
|
||||
total_step = len(train_loader)
|
||||
|
||||
# Build Models
|
||||
encoder = EncoderCNN(embed_size)
|
||||
decoder = DecoderRNN(embed_size, hidden_size, len(vocab), num_layers)
|
||||
encoder.cuda()
|
||||
decoder.cuda()
|
||||
|
||||
# Loss and Optimizer
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(decoder.parameters(), lr=learning_rate)
|
||||
|
||||
# Train the Decoder
|
||||
for epoch in range(num_epochs):
|
||||
for i, (images, captions, lengths) in enumerate(train_loader):
|
||||
# Set mini-batch dataset
|
||||
images = Variable(images).cuda()
|
||||
captions = Variable(captions).cuda()
|
||||
targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
|
||||
|
||||
# Forward, Backward and Optimize
|
||||
decoder.zero_grad()
|
||||
features = encoder(images)
|
||||
outputs = decoder(features, captions, lengths)
|
||||
loss = criterion(outputs, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
if i % 100 == 0:
|
||||
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
|
||||
%(epoch, num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0])))
|
||||
|
||||
# Save the Model
|
||||
torch.save(decoder, 'decoder.pkl')
|
||||
torch.save(encoder, 'encoder.pkl')
|
65
tutorials/09 - Image Captioning/vocab.py
Normal file
65
tutorials/09 - Image Captioning/vocab.py
Normal file
@ -0,0 +1,65 @@
|
||||
# Create a vocabulary wrapper
|
||||
import nltk
|
||||
import pickle
|
||||
from collections import Counter
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
|
||||
class Vocabulary(object):
|
||||
"""Simple vocabulary wrapper."""
|
||||
def __init__(self):
|
||||
self.word2idx = {}
|
||||
self.idx2word = {}
|
||||
self.idx = 0
|
||||
|
||||
def add_word(self, word):
|
||||
if not word in self.word2idx:
|
||||
self.word2idx[word] = self.idx
|
||||
self.idx2word[self.idx] = word
|
||||
self.idx += 1
|
||||
|
||||
def __call__(self, word):
|
||||
if not word in self.word2idx:
|
||||
return self.word2idx['<unk>']
|
||||
return self.word2idx[word]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.word2idx)
|
||||
|
||||
def build_vocab(json, threshold):
|
||||
"""Build a simple vocabulary wrapper."""
|
||||
coco = COCO(json)
|
||||
counter = Counter()
|
||||
ids = coco.anns.keys()
|
||||
for i, id in enumerate(ids):
|
||||
caption = str(coco.anns[id]['caption'])
|
||||
tokens = nltk.tokenize.word_tokenize(caption.lower())
|
||||
counter.update(tokens)
|
||||
|
||||
if i % 1000 == 0:
|
||||
print("[%d/%d] tokenized the captions." %(i, len(ids)))
|
||||
|
||||
# Discard if the occurrence of the word is less than min_word_cnt.
|
||||
words = [word for word, cnt in counter.items() if cnt >= threshold]
|
||||
|
||||
# Create a vocab wrapper and add some special tokens.
|
||||
vocab = Vocabulary()
|
||||
vocab.add_word('<pad>')
|
||||
vocab.add_word('<start>')
|
||||
vocab.add_word('<end>')
|
||||
vocab.add_word('<unk>')
|
||||
|
||||
# Add words to the vocabulary.
|
||||
for i, word in enumerate(words):
|
||||
vocab.add_word(word)
|
||||
return vocab
|
||||
|
||||
def main():
|
||||
vocab = create_vocab(json='./data/annotations/captions_train2014.json',
|
||||
threshold=4)
|
||||
with open('./data/vocab.pkl', 'wb') as f:
|
||||
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)
|
||||
print("Saved vocabulary file to ", './data/vocab.pkl')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user