mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-05 00:24:02 +08:00
delete
This commit is contained in:
@ -1,101 +0,0 @@
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
import torch.utils.data as data
|
||||
import os
|
||||
import sys
|
||||
import pickle
|
||||
import numpy as np
|
||||
import nltk
|
||||
from PIL import Image
|
||||
from vocab import Vocabulary
|
||||
sys.path.append('../../../coco/PythonAPI')
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
|
||||
class CocoDataset(data.Dataset):
|
||||
"""COCO Custom Dataset compatible with torch.utils.data.DataLoader."""
|
||||
def __init__(self, root, json, vocab, transform=None):
|
||||
"""Set the path for images, captions and vocabulary wrapper.
|
||||
|
||||
Args:
|
||||
root: image directory.
|
||||
json: coco annotation file path.
|
||||
vocab: vocabulary wrapper.
|
||||
transform: image transformer
|
||||
"""
|
||||
self.root = root
|
||||
self.coco = COCO(json)
|
||||
self.ids = list(self.coco.anns.keys())
|
||||
self.vocab = vocab
|
||||
self.transform = transform
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""Returns one data pair (image and caption)."""
|
||||
coco = self.coco
|
||||
vocab = self.vocab
|
||||
ann_id = self.ids[index]
|
||||
caption = coco.anns[ann_id]['caption']
|
||||
img_id = coco.anns[ann_id]['image_id']
|
||||
path = coco.loadImgs(img_id)[0]['file_name']
|
||||
|
||||
image = Image.open(os.path.join(self.root, path)).convert('RGB')
|
||||
if self.transform is not None:
|
||||
image = self.transform(image)
|
||||
|
||||
# Convert caption (string) to word ids.
|
||||
tokens = nltk.tokenize.word_tokenize(str(caption).lower())
|
||||
caption = []
|
||||
caption.append(vocab('<start>'))
|
||||
caption.extend([vocab(token) for token in tokens])
|
||||
caption.append(vocab('<end>'))
|
||||
target = torch.Tensor(caption)
|
||||
return image, target
|
||||
|
||||
def __len__(self):
|
||||
return len(self.ids)
|
||||
|
||||
|
||||
def collate_fn(data):
|
||||
"""Creates mini-batch tensors from the list of tuples (image, caption).
|
||||
|
||||
Args:
|
||||
data: list of tuple (image, caption).
|
||||
- image: torch tensor of shape (3, 256, 256).
|
||||
- caption: torch tensor of shape (?); variable length.
|
||||
|
||||
Returns:
|
||||
images: torch tensor of shape (batch_size, 3, 256, 256).
|
||||
targets: torch tensor of shape (batch_size, padded_length).
|
||||
lengths: list; valid length for each padded caption.
|
||||
"""
|
||||
# Sort a data list by caption length
|
||||
data.sort(key=lambda x: len(x[1]), reverse=True)
|
||||
images, captions = zip(*data)
|
||||
|
||||
# Merge images (from tuple of 3D tensor to 4D tensor)
|
||||
images = torch.stack(images, 0)
|
||||
|
||||
# Merge captions (from tuple of 1D tensor to 2D tensor)
|
||||
lengths = [len(cap) for cap in captions]
|
||||
targets = torch.zeros(len(captions), max(lengths)).long()
|
||||
for i, cap in enumerate(captions):
|
||||
end = lengths[i]
|
||||
targets[i, :end] = cap[:end]
|
||||
return images, targets, lengths
|
||||
|
||||
|
||||
def get_data_loader(root, json, vocab, transform, batch_size, shuffle, num_workers):
|
||||
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
|
||||
# COCO dataset
|
||||
coco = CocoDataset(root=root,
|
||||
json=json,
|
||||
vocab = vocab,
|
||||
transform=transform)
|
||||
|
||||
# Data loader for COCO dataset
|
||||
data_loader = torch.utils.data.DataLoader(dataset=coco,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle,
|
||||
num_workers=num_workers,
|
||||
collate_fn=collate_fn)
|
||||
return data_loader
|
@ -1,68 +0,0 @@
|
||||
import nltk
|
||||
import pickle
|
||||
import os
|
||||
from configuration import Config
|
||||
from collections import Counter
|
||||
from pycocotools.coco import COCO
|
||||
|
||||
|
||||
class Vocabulary(object):
|
||||
"""Simple vocabulary wrapper."""
|
||||
def __init__(self):
|
||||
self.word2idx = {}
|
||||
self.idx2word = {}
|
||||
self.idx = 0
|
||||
|
||||
def add_word(self, word):
|
||||
if not word in self.word2idx:
|
||||
self.word2idx[word] = self.idx
|
||||
self.idx2word[self.idx] = word
|
||||
self.idx += 1
|
||||
|
||||
def __call__(self, word):
|
||||
if not word in self.word2idx:
|
||||
return self.word2idx['<unk>']
|
||||
return self.word2idx[word]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.word2idx)
|
||||
|
||||
def build_vocab(json, threshold):
|
||||
"""Builds a simple vocabulary wrapper."""
|
||||
coco = COCO(json)
|
||||
counter = Counter()
|
||||
ids = coco.anns.keys()
|
||||
for i, id in enumerate(ids):
|
||||
caption = str(coco.anns[id]['caption'])
|
||||
tokens = nltk.tokenize.word_tokenize(caption.lower())
|
||||
counter.update(tokens)
|
||||
|
||||
if i % 1000 == 0:
|
||||
print("[%d/%d] Tokenized the captions." %(i, len(ids)))
|
||||
|
||||
# If the word frequency is less than 'threshold', then the word is discarded.
|
||||
words = [word for word, cnt in counter.items() if cnt >= threshold]
|
||||
|
||||
# Creates a vocab wrapper and add some special tokens.
|
||||
vocab = Vocabulary()
|
||||
vocab.add_word('<pad>')
|
||||
vocab.add_word('<start>')
|
||||
vocab.add_word('<end>')
|
||||
vocab.add_word('<unk>')
|
||||
|
||||
# Adds the words to the vocabulary.
|
||||
for i, word in enumerate(words):
|
||||
vocab.add_word(word)
|
||||
return vocab
|
||||
|
||||
def main():
|
||||
config = Config()
|
||||
vocab = build_vocab(json=os.path.join(config.caption_path, 'captions_train2014.json'),
|
||||
threshold=config.word_count_threshold)
|
||||
vocab_path = os.path.join(config.vocab_path, 'vocab.pkl')
|
||||
with open(vocab_path, 'wb') as f:
|
||||
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)
|
||||
print("Saved the vocabulary wrapper to ", vocab_path)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user