mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-07 10:05:29 +08:00
code for saving the model is added
This commit is contained in:
@ -58,4 +58,7 @@ predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
|
|||||||
plt.plot(x_train, y_train, 'ro', label='Original data')
|
plt.plot(x_train, y_train, 'ro', label='Original data')
|
||||||
plt.plot(x_train, predicted, label='Fitted line')
|
plt.plot(x_train, predicted, label='Fitted line')
|
||||||
plt.legend()
|
plt.legend()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(model, 'model.pkl')
|
@ -13,12 +13,12 @@ batch_size = 100
|
|||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
|
|
||||||
# MNIST Dataset (Images and Labels)
|
# MNIST Dataset (Images and Labels)
|
||||||
train_dataset = dsets.MNIST(root='./data',
|
train_dataset = dsets.MNIST(root='../data',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data',
|
test_dataset = dsets.MNIST(root='../data',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -76,4 +76,7 @@ for images, labels in test_loader:
|
|||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted == labels).sum()
|
correct += (predicted == labels).sum()
|
||||||
|
|
||||||
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(model, 'model.pkl')
|
@ -14,12 +14,12 @@ batch_size = 100
|
|||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
|
|
||||||
# MNIST Dataset
|
# MNIST Dataset
|
||||||
train_dataset = dsets.MNIST(root='./data',
|
train_dataset = dsets.MNIST(root='../data',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data',
|
test_dataset = dsets.MNIST(root='../data',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
|
@ -14,12 +14,12 @@ batch_size = 100
|
|||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
|
|
||||||
# MNIST Dataset
|
# MNIST Dataset
|
||||||
train_dataset = dsets.MNIST(root='./data',
|
train_dataset = dsets.MNIST(root='../data',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data',
|
test_dataset = dsets.MNIST(root='../data',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
|
@ -11,12 +11,12 @@ batch_size = 100
|
|||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
|
|
||||||
# MNIST Dataset
|
# MNIST Dataset
|
||||||
train_dataset = dsets.MNIST(root='./data/',
|
train_dataset = dsets.MNIST(root='../data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data/',
|
test_dataset = dsets.MNIST(root='../data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -77,7 +77,7 @@ for epoch in range(num_epochs):
|
|||||||
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
|
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
|
||||||
|
|
||||||
# Test the Model
|
# Test the Model
|
||||||
cnn.eval()
|
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
|
||||||
correct = 0
|
correct = 0
|
||||||
total = 0
|
total = 0
|
||||||
for images, labels in test_loader:
|
for images, labels in test_loader:
|
||||||
@ -85,6 +85,9 @@ for images, labels in test_loader:
|
|||||||
outputs = cnn(images)
|
outputs = cnn(images)
|
||||||
_, predicted = torch.max(outputs.data, 1)
|
_, predicted = torch.max(outputs.data, 1)
|
||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted == labels).sum()
|
correct += (predicted.cpu() == labels).sum()
|
||||||
|
|
||||||
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Trained Model
|
||||||
|
torch.save(cnn, 'cnn.pkl')
|
@ -11,12 +11,12 @@ batch_size = 100
|
|||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
|
|
||||||
# MNIST Dataset
|
# MNIST Dataset
|
||||||
train_dataset = dsets.MNIST(root='./data/',
|
train_dataset = dsets.MNIST(root='../data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data/',
|
test_dataset = dsets.MNIST(root='../data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -77,7 +77,7 @@ for epoch in range(num_epochs):
|
|||||||
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
|
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
|
||||||
|
|
||||||
# Test the Model
|
# Test the Model
|
||||||
cnn.eval()
|
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
|
||||||
correct = 0
|
correct = 0
|
||||||
total = 0
|
total = 0
|
||||||
for images, labels in test_loader:
|
for images, labels in test_loader:
|
||||||
@ -87,4 +87,7 @@ for images, labels in test_loader:
|
|||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted == labels).sum()
|
correct += (predicted == labels).sum()
|
||||||
|
|
||||||
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Trained Model
|
||||||
|
torch.save(cnn, 'cnn.pkl')
|
@ -14,12 +14,12 @@ transform = transforms.Compose([
|
|||||||
transforms.ToTensor()])
|
transforms.ToTensor()])
|
||||||
|
|
||||||
# CIFAR-10 Dataset
|
# CIFAR-10 Dataset
|
||||||
train_dataset = dsets.CIFAR10(root='./data/',
|
train_dataset = dsets.CIFAR10(root='../data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transform,
|
transform=transform,
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.CIFAR10(root='./data/',
|
test_dataset = dsets.CIFAR10(root='../data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -109,7 +109,7 @@ lr = 0.001
|
|||||||
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
for epoch in range(40):
|
for epoch in range(80):
|
||||||
for i, (images, labels) in enumerate(train_loader):
|
for i, (images, labels) in enumerate(train_loader):
|
||||||
images = Variable(images.cuda())
|
images = Variable(images.cuda())
|
||||||
labels = Variable(labels.cuda())
|
labels = Variable(labels.cuda())
|
||||||
@ -122,7 +122,7 @@ for epoch in range(40):
|
|||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
if (i+1) % 100 == 0:
|
if (i+1) % 100 == 0:
|
||||||
print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 40, i+1, 500, loss.data[0]))
|
print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 80, i+1, 500, loss.data[0]))
|
||||||
|
|
||||||
# Decaying Learning Rate
|
# Decaying Learning Rate
|
||||||
if (epoch+1) % 20 == 0:
|
if (epoch+1) % 20 == 0:
|
||||||
@ -130,6 +130,7 @@ for epoch in range(40):
|
|||||||
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
||||||
|
|
||||||
# Test
|
# Test
|
||||||
|
resnet.eval()
|
||||||
correct = 0
|
correct = 0
|
||||||
total = 0
|
total = 0
|
||||||
for images, labels in test_loader:
|
for images, labels in test_loader:
|
||||||
@ -139,4 +140,7 @@ for images, labels in test_loader:
|
|||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted.cpu() == labels).sum()
|
correct += (predicted.cpu() == labels).sum()
|
||||||
|
|
||||||
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
|
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(resnet, 'resnet.pkl')
|
@ -14,12 +14,12 @@ transform = transforms.Compose([
|
|||||||
transforms.ToTensor()])
|
transforms.ToTensor()])
|
||||||
|
|
||||||
# CIFAR-10 Dataset
|
# CIFAR-10 Dataset
|
||||||
train_dataset = dsets.CIFAR10(root='./data/',
|
train_dataset = dsets.CIFAR10(root='../data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transform,
|
transform=transform,
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.CIFAR10(root='./data/',
|
test_dataset = dsets.CIFAR10(root='../data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -130,6 +130,7 @@ for epoch in range(80):
|
|||||||
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
|
||||||
|
|
||||||
# Test
|
# Test
|
||||||
|
resnet.eval()
|
||||||
correct = 0
|
correct = 0
|
||||||
total = 0
|
total = 0
|
||||||
for images, labels in test_loader:
|
for images, labels in test_loader:
|
||||||
@ -139,4 +140,7 @@ for images, labels in test_loader:
|
|||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted == labels).sum()
|
correct += (predicted == labels).sum()
|
||||||
|
|
||||||
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
|
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(resnet, 'resnet.pkl')
|
@ -16,12 +16,12 @@ num_epochs = 2
|
|||||||
learning_rate = 0.01
|
learning_rate = 0.01
|
||||||
|
|
||||||
# MNIST Dataset
|
# MNIST Dataset
|
||||||
train_dataset = dsets.MNIST(root='./data/',
|
train_dataset = dsets.MNIST(root='../data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data/',
|
test_dataset = dsets.MNIST(root='../data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -87,4 +87,7 @@ for images, labels in test_loader:
|
|||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted.cpu() == labels).sum()
|
correct += (predicted.cpu() == labels).sum()
|
||||||
|
|
||||||
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(rnn, 'rnn.pkl')
|
@ -16,12 +16,12 @@ num_epochs = 2
|
|||||||
learning_rate = 0.01
|
learning_rate = 0.01
|
||||||
|
|
||||||
# MNIST Dataset
|
# MNIST Dataset
|
||||||
train_dataset = dsets.MNIST(root='./data/',
|
train_dataset = dsets.MNIST(root='../data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data/',
|
test_dataset = dsets.MNIST(root='../data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -87,4 +87,7 @@ for images, labels in test_loader:
|
|||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted == labels).sum()
|
correct += (predicted == labels).sum()
|
||||||
|
|
||||||
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(rnn, 'rnn.pkl')
|
@ -16,12 +16,12 @@ num_epochs = 2
|
|||||||
learning_rate = 0.003
|
learning_rate = 0.003
|
||||||
|
|
||||||
# MNIST Dataset
|
# MNIST Dataset
|
||||||
train_dataset = dsets.MNIST(root='./data/',
|
train_dataset = dsets.MNIST(root='../data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data/',
|
test_dataset = dsets.MNIST(root='../data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -88,4 +88,7 @@ for images, labels in test_loader:
|
|||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted.cpu() == labels).sum()
|
correct += (predicted.cpu() == labels).sum()
|
||||||
|
|
||||||
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(rnn, 'rnn.pkl')
|
@ -16,12 +16,12 @@ num_epochs = 2
|
|||||||
learning_rate = 0.003
|
learning_rate = 0.003
|
||||||
|
|
||||||
# MNIST Dataset
|
# MNIST Dataset
|
||||||
train_dataset = dsets.MNIST(root='./data/',
|
train_dataset = dsets.MNIST(root='../data/',
|
||||||
train=True,
|
train=True,
|
||||||
transform=transforms.ToTensor(),
|
transform=transforms.ToTensor(),
|
||||||
download=True)
|
download=True)
|
||||||
|
|
||||||
test_dataset = dsets.MNIST(root='./data/',
|
test_dataset = dsets.MNIST(root='../data/',
|
||||||
train=False,
|
train=False,
|
||||||
transform=transforms.ToTensor())
|
transform=transforms.ToTensor())
|
||||||
|
|
||||||
@ -88,4 +88,7 @@ for images, labels in test_loader:
|
|||||||
total += labels.size(0)
|
total += labels.size(0)
|
||||||
correct += (predicted == labels).sum()
|
correct += (predicted == labels).sum()
|
||||||
|
|
||||||
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(rnn, 'rnn.pkl')
|
46
tutorials/08 - Language Model/data_utils.py
Normal file
46
tutorials/08 - Language Model/data_utils.py
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
import torch
|
||||||
|
import os
|
||||||
|
|
||||||
|
class Dictionary(object):
|
||||||
|
def __init__(self):
|
||||||
|
self.word2idx = {}
|
||||||
|
self.idx2word = {}
|
||||||
|
self.idx = 0
|
||||||
|
|
||||||
|
def add_word(self, word):
|
||||||
|
if not word in self.word2idx:
|
||||||
|
self.word2idx[word] = self.idx
|
||||||
|
self.idx2word[self.idx] = word
|
||||||
|
self.idx += 1
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.word2idx)
|
||||||
|
|
||||||
|
class Corpus(object):
|
||||||
|
def __init__(self, path='./data'):
|
||||||
|
self.dictionary = Dictionary()
|
||||||
|
self.train = os.path.join(path, 'train.txt')
|
||||||
|
self.test = os.path.join(path, 'test.txt')
|
||||||
|
|
||||||
|
def get_data(self, path, batch_size=20):
|
||||||
|
# Add words to the dictionary
|
||||||
|
with open(path, 'r') as f:
|
||||||
|
tokens = 0
|
||||||
|
for line in f:
|
||||||
|
words = line.split() + ['<eos>']
|
||||||
|
tokens += len(words)
|
||||||
|
for word in words:
|
||||||
|
self.dictionary.add_word(word)
|
||||||
|
|
||||||
|
# Tokenize the file content
|
||||||
|
ids = torch.LongTensor(tokens)
|
||||||
|
token = 0
|
||||||
|
with open(path, 'r') as f:
|
||||||
|
for line in f:
|
||||||
|
words = line.split() + ['<eos>']
|
||||||
|
for word in words:
|
||||||
|
ids[token] = self.dictionary.word2idx[word]
|
||||||
|
token += 1
|
||||||
|
num_batches = ids.size(0) // batch_size
|
||||||
|
ids = ids[:num_batches*batch_size]
|
||||||
|
return ids.view(batch_size, -1)
|
124
tutorials/08 - Language Model/main-gpu.py
Normal file
124
tutorials/08 - Language Model/main-gpu.py
Normal file
@ -0,0 +1,124 @@
|
|||||||
|
# RNN Based Language Model on Penn Treebank dataset.
|
||||||
|
# Some part of the code was referenced from below.
|
||||||
|
# https://github.com/pytorch/examples/tree/master/word_language_model
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from torch.autograd import Variable
|
||||||
|
from data_utils import Dictionary, Corpus
|
||||||
|
|
||||||
|
# Hyper Parameters
|
||||||
|
embed_size = 128
|
||||||
|
hidden_size = 1024
|
||||||
|
num_layers = 1
|
||||||
|
num_epochs = 5
|
||||||
|
num_samples = 1000 # number of words to be sampled
|
||||||
|
batch_size = 20
|
||||||
|
seq_length = 30
|
||||||
|
learning_rate = 0.002
|
||||||
|
|
||||||
|
# Load Penn Treebank Dataset
|
||||||
|
train_path = './data/train.txt'
|
||||||
|
sample_path = './sample.txt'
|
||||||
|
corpus = Corpus()
|
||||||
|
ids = corpus.get_data(train_path, batch_size)
|
||||||
|
vocab_size = len(corpus.dictionary)
|
||||||
|
num_batches = ids.size(1) // seq_length
|
||||||
|
|
||||||
|
# RNN Based Language Model
|
||||||
|
class RNNLM(nn.Module):
|
||||||
|
def __init__(self, vocab_size, embed_size, hidden_size, num_layers):
|
||||||
|
super(RNNLM, self).__init__()
|
||||||
|
self.embed = nn.Embedding(vocab_size, embed_size)
|
||||||
|
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
|
||||||
|
self.linear = nn.Linear(hidden_size, vocab_size)
|
||||||
|
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
def init_weights(self):
|
||||||
|
self.embed.weight.data.uniform_(-0.1, 0.1)
|
||||||
|
self.linear.bias.data.fill_(0)
|
||||||
|
self.linear.weight.data.uniform_(-0.1, 0.1)
|
||||||
|
|
||||||
|
def forward(self, x, h):
|
||||||
|
# Embed word ids to vectors
|
||||||
|
x = self.embed(x)
|
||||||
|
|
||||||
|
# Forward propagate RNN
|
||||||
|
out, h = self.lstm(x, h)
|
||||||
|
|
||||||
|
# Reshape output to (batch_size*sequence_length, hidden_size)
|
||||||
|
out = out.contiguous().view(out.size(0)*out.size(1), out.size(2))
|
||||||
|
|
||||||
|
# Decode hidden states of all time step
|
||||||
|
out = self.linear(out)
|
||||||
|
return out, h
|
||||||
|
|
||||||
|
model = RNNLM(vocab_size, embed_size, hidden_size, num_layers)
|
||||||
|
model.cuda()
|
||||||
|
|
||||||
|
# Loss and Optimizer
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
# Truncated Backpropagation
|
||||||
|
def detach(states):
|
||||||
|
return [Variable(state.data) for state in states]
|
||||||
|
|
||||||
|
# Training
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
# Initial hidden and memory states
|
||||||
|
states = (Variable(torch.zeros(num_layers, batch_size, hidden_size)).cuda(),
|
||||||
|
Variable(torch.zeros(num_layers, batch_size, hidden_size)).cuda())
|
||||||
|
|
||||||
|
for i in range(0, ids.size(1) - seq_length, seq_length):
|
||||||
|
# Get batch inputs and targets
|
||||||
|
inputs = Variable(ids[:, i:i+seq_length]).cuda()
|
||||||
|
targets = Variable(ids[:, (i+1):(i+1)+seq_length].contiguous()).cuda()
|
||||||
|
|
||||||
|
# Forward + Backward + Optimize
|
||||||
|
model.zero_grad()
|
||||||
|
states = detach(states)
|
||||||
|
outputs, states = model(inputs, states)
|
||||||
|
loss = criterion(outputs, targets.view(-1))
|
||||||
|
loss.backward()
|
||||||
|
torch.nn.utils.clip_grad_norm(model.parameters(), 0.5)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
step = (i+1) // seq_length
|
||||||
|
if step % 100 == 0:
|
||||||
|
print ('Epoch [%d/%d], Step[%d/%d], Loss: %.3f, Perplexity: %5.2f' %
|
||||||
|
(epoch+1, num_epochs, step, num_batches, loss.data[0], np.exp(loss.data[0])))
|
||||||
|
|
||||||
|
# Sampling
|
||||||
|
with open(sample_path, 'w') as f:
|
||||||
|
# Set intial hidden ane memory states
|
||||||
|
state = (Variable(torch.zeros(num_layers, 1, hidden_size)).cuda(),
|
||||||
|
Variable(torch.zeros(num_layers, 1, hidden_size)).cuda())
|
||||||
|
|
||||||
|
# Select one word id randomly
|
||||||
|
prob = torch.ones(vocab_size)
|
||||||
|
input = Variable(torch.multinomial(prob, num_samples=1).unsqueeze(1),
|
||||||
|
volatile=True).cuda()
|
||||||
|
|
||||||
|
for i in range(num_samples):
|
||||||
|
# Forward propagate rnn
|
||||||
|
output, state = model(input, state)
|
||||||
|
|
||||||
|
# Sample a word id
|
||||||
|
prob = output.squeeze().data.exp().cpu()
|
||||||
|
word_id = torch.multinomial(prob, 1)[0]
|
||||||
|
|
||||||
|
# Feed sampled word id to next time step
|
||||||
|
input.data.fill_(word_id)
|
||||||
|
|
||||||
|
# File write
|
||||||
|
word = corpus.dictionary.idx2word[word_id]
|
||||||
|
word = '\n' if word == '<eos>' else word + ' '
|
||||||
|
f.write(word)
|
||||||
|
|
||||||
|
if (i+1) % 100 == 0:
|
||||||
|
print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path))
|
||||||
|
|
||||||
|
# Save the Trained Model
|
||||||
|
torch.save(model, 'model.pkl')
|
123
tutorials/08 - Language Model/main.py
Normal file
123
tutorials/08 - Language Model/main.py
Normal file
@ -0,0 +1,123 @@
|
|||||||
|
# Some part of the code was referenced from below.
|
||||||
|
# https://github.com/pytorch/examples/tree/master/word_language_model
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
from torch.autograd import Variable
|
||||||
|
from data_utils import Dictionary, Corpus
|
||||||
|
|
||||||
|
# Hyper Parameters
|
||||||
|
embed_size = 128
|
||||||
|
hidden_size = 1024
|
||||||
|
num_layers = 1
|
||||||
|
num_epochs = 5
|
||||||
|
num_samples = 1000 # number of words to be sampled
|
||||||
|
batch_size = 20
|
||||||
|
seq_length = 30
|
||||||
|
learning_rate = 0.002
|
||||||
|
|
||||||
|
# Load Penn Treebank Dataset
|
||||||
|
train_path = './data/train.txt'
|
||||||
|
sample_path = './sample.txt'
|
||||||
|
corpus = Corpus()
|
||||||
|
ids = corpus.get_data(train_path, batch_size)
|
||||||
|
vocab_size = len(corpus.dictionary)
|
||||||
|
num_batches = ids.size(1) // seq_length
|
||||||
|
|
||||||
|
# RNN Based Language Model
|
||||||
|
class RNNLM(nn.Module):
|
||||||
|
def __init__(self, vocab_size, embed_size, hidden_size, num_layers):
|
||||||
|
super(RNNLM, self).__init__()
|
||||||
|
self.embed = nn.Embedding(vocab_size, embed_size)
|
||||||
|
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
|
||||||
|
self.linear = nn.Linear(hidden_size, vocab_size)
|
||||||
|
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
def init_weights(self):
|
||||||
|
self.embed.weight.data.uniform_(-0.1, 0.1)
|
||||||
|
self.linear.bias.data.fill_(0)
|
||||||
|
self.linear.weight.data.uniform_(-0.1, 0.1)
|
||||||
|
|
||||||
|
def forward(self, x, h):
|
||||||
|
# Embed word ids to vectors
|
||||||
|
x = self.embed(x)
|
||||||
|
|
||||||
|
# Forward propagate RNN
|
||||||
|
out, h = self.lstm(x, h)
|
||||||
|
|
||||||
|
# Reshape output to (batch_size*sequence_length, hidden_size)
|
||||||
|
out = out.contiguous().view(out.size(0)*out.size(1), out.size(2))
|
||||||
|
|
||||||
|
# Decode hidden states of all time step
|
||||||
|
out = self.linear(out)
|
||||||
|
return out, h
|
||||||
|
|
||||||
|
model = RNNLM(vocab_size, embed_size, hidden_size, num_layers)
|
||||||
|
|
||||||
|
|
||||||
|
# Loss and Optimizer
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
# Truncated Backpropagation
|
||||||
|
def detach(states):
|
||||||
|
return [Variable(state.data) for state in states]
|
||||||
|
|
||||||
|
# Training
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
# Initial hidden and memory states
|
||||||
|
states = (Variable(torch.zeros(num_layers, batch_size, hidden_size)),
|
||||||
|
Variable(torch.zeros(num_layers, batch_size, hidden_size)))
|
||||||
|
|
||||||
|
for i in range(0, ids.size(1) - seq_length, seq_length):
|
||||||
|
# Get batch inputs and targets
|
||||||
|
inputs = Variable(ids[:, i:i+seq_length])
|
||||||
|
targets = Variable(ids[:, (i+1):(i+1)+seq_length].contiguous())
|
||||||
|
|
||||||
|
# Forward + Backward + Optimize
|
||||||
|
model.zero_grad()
|
||||||
|
states = detach(states)
|
||||||
|
outputs, states = model(inputs, states)
|
||||||
|
loss = criterion(outputs, targets.view(-1))
|
||||||
|
loss.backward()
|
||||||
|
torch.nn.utils.clip_grad_norm(model.parameters(), 0.5)
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
step = (i+1) // seq_length
|
||||||
|
if step % 100 == 0:
|
||||||
|
print ('Epoch [%d/%d], Step[%d/%d], Loss: %.3f, Perplexity: %5.2f' %
|
||||||
|
(epoch+1, num_epochs, step, num_batches, loss.data[0], np.exp(loss.data[0])))
|
||||||
|
|
||||||
|
# Sampling
|
||||||
|
with open(sample_path, 'w') as f:
|
||||||
|
# Set intial hidden ane memory states
|
||||||
|
state = (Variable(torch.zeros(num_layers, 1, hidden_size)),
|
||||||
|
Variable(torch.zeros(num_layers, 1, hidden_size)))
|
||||||
|
|
||||||
|
# Select one word id randomly
|
||||||
|
prob = torch.ones(vocab_size)
|
||||||
|
input = Variable(torch.multinomial(prob, num_samples=1).unsqueeze(1),
|
||||||
|
volatile=True)
|
||||||
|
|
||||||
|
for i in range(num_samples):
|
||||||
|
# Forward propagate rnn
|
||||||
|
output, state = model(input, state)
|
||||||
|
|
||||||
|
# Sample a word id
|
||||||
|
prob = output.squeeze().data.exp()
|
||||||
|
word_id = torch.multinomial(prob, 1)[0]
|
||||||
|
|
||||||
|
# Feed sampled word id to next time step
|
||||||
|
input.data.fill_(word_id)
|
||||||
|
|
||||||
|
# File write
|
||||||
|
word = corpus.dictionary.idx2word[word_id]
|
||||||
|
word = '\n' if word == '<eos>' else word + ' '
|
||||||
|
f.write(word)
|
||||||
|
|
||||||
|
if (i+1) % 100 == 0:
|
||||||
|
print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path))
|
||||||
|
|
||||||
|
# Save the Trained Model
|
||||||
|
torch.save(model, 'model.pkl')
|
134
tutorials/10 - Generative Adversarial Network/main-gpu.py
Normal file
134
tutorials/10 - Generative Adversarial Network/main-gpu.py
Normal file
@ -0,0 +1,134 @@
|
|||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
import torch.nn as nn
|
||||||
|
import torchvision.datasets as dsets
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
from torch.autograd import Variable
|
||||||
|
|
||||||
|
# Image Preprocessing
|
||||||
|
transform = transforms.Compose([
|
||||||
|
transforms.Scale(36),
|
||||||
|
transforms.RandomCrop(32),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||||
|
|
||||||
|
# CIFAR-10 Dataset
|
||||||
|
train_dataset = dsets.CIFAR10(root='../data/',
|
||||||
|
train=True,
|
||||||
|
transform=transform,
|
||||||
|
download=True)
|
||||||
|
|
||||||
|
# Data Loader (Input Pipeline)
|
||||||
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||||
|
batch_size=100,
|
||||||
|
shuffle=True)
|
||||||
|
|
||||||
|
# 5x5 Convolution
|
||||||
|
def conv5x5(in_channels, out_channels, stride):
|
||||||
|
return nn.Conv2d(in_channels, out_channels, kernel_size=4,
|
||||||
|
stride=stride, padding=1, bias=False)
|
||||||
|
|
||||||
|
# Discriminator Model
|
||||||
|
class Discriminator(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(Discriminator, self).__init__()
|
||||||
|
self.model = nn.Sequential(
|
||||||
|
conv5x5(3, 16, 2),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
conv5x5(16, 32, 2),
|
||||||
|
nn.BatchNorm2d(32),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
conv5x5(32, 64, 2),
|
||||||
|
nn.BatchNorm2d(64),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
nn.Conv2d(64, 1, kernel_size=4),
|
||||||
|
nn.Sigmoid())
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out = self.model(x)
|
||||||
|
out = out.view(out.size(0), -1)
|
||||||
|
return out
|
||||||
|
|
||||||
|
# 4x4 Transpose convolution
|
||||||
|
def conv_transpose4x4(in_channels, out_channels, stride=1, padding=1, bias=False):
|
||||||
|
return nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4,
|
||||||
|
stride=stride, padding=padding, bias=bias)
|
||||||
|
|
||||||
|
# Generator Model
|
||||||
|
class Generator(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(Generator, self).__init__()
|
||||||
|
self.model = nn.Sequential(
|
||||||
|
conv_transpose4x4(128, 64, padding=0),
|
||||||
|
nn.BatchNorm2d(64),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
conv_transpose4x4(64, 32, 2),
|
||||||
|
nn.BatchNorm2d(32),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
conv_transpose4x4(32, 16, 2),
|
||||||
|
nn.BatchNorm2d(16),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
conv_transpose4x4(16, 3, 2, bias=True),
|
||||||
|
nn.Tanh())
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x.view(x.size(0), 128, 1, 1)
|
||||||
|
out = self.model(x)
|
||||||
|
return out
|
||||||
|
|
||||||
|
discriminator = Discriminator()
|
||||||
|
generator = Generator()
|
||||||
|
discriminator.cuda()
|
||||||
|
generator.cuda()
|
||||||
|
|
||||||
|
# Loss and Optimizer
|
||||||
|
criterion = nn.BCELoss()
|
||||||
|
lr = 0.002
|
||||||
|
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
|
||||||
|
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
|
||||||
|
|
||||||
|
# Training
|
||||||
|
for epoch in range(50):
|
||||||
|
for i, (images, _) in enumerate(train_loader):
|
||||||
|
images = Variable(images.cuda())
|
||||||
|
real_labels = Variable(torch.ones(images.size(0)).cuda())
|
||||||
|
fake_labels = Variable(torch.zeros(images.size(0)).cuda())
|
||||||
|
|
||||||
|
# Train the discriminator
|
||||||
|
discriminator.zero_grad()
|
||||||
|
outputs = discriminator(images)
|
||||||
|
real_loss = criterion(outputs, real_labels)
|
||||||
|
real_score = outputs
|
||||||
|
|
||||||
|
noise = Variable(torch.randn(images.size(0), 128).cuda())
|
||||||
|
fake_images = generator(noise)
|
||||||
|
outputs = discriminator(fake_images)
|
||||||
|
fake_loss = criterion(outputs, fake_labels)
|
||||||
|
fake_score = outputs
|
||||||
|
|
||||||
|
d_loss = real_loss + fake_loss
|
||||||
|
d_loss.backward()
|
||||||
|
d_optimizer.step()
|
||||||
|
|
||||||
|
# Train the generator
|
||||||
|
generator.zero_grad()
|
||||||
|
noise = Variable(torch.randn(images.size(0), 128).cuda())
|
||||||
|
fake_images = generator(noise)
|
||||||
|
outputs = discriminator(fake_images)
|
||||||
|
g_loss = criterion(outputs, real_labels)
|
||||||
|
g_loss.backward()
|
||||||
|
g_optimizer.step()
|
||||||
|
|
||||||
|
if (i+1) % 100 == 0:
|
||||||
|
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, g_loss: %.4f, '
|
||||||
|
'D(x): %.2f, D(G(z)): %.2f'
|
||||||
|
%(epoch, 50, i+1, 500, d_loss.data[0], g_loss.data[0],
|
||||||
|
real_score.cpu().data.mean(), fake_score.cpu().data.mean()))
|
||||||
|
|
||||||
|
# Save the sampled images
|
||||||
|
torchvision.utils.save_image(fake_images.data,
|
||||||
|
'./data/fake_samples_%d_%d.png' %(epoch+1, i+1))
|
||||||
|
|
||||||
|
# Save the Models
|
||||||
|
torch.save(generator, './generator.pkl')
|
||||||
|
torch.save(discriminator, './discriminator.pkl')
|
134
tutorials/10 - Generative Adversarial Network/main.py
Normal file
134
tutorials/10 - Generative Adversarial Network/main.py
Normal file
@ -0,0 +1,134 @@
|
|||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
import torch.nn as nn
|
||||||
|
import torchvision.datasets as dsets
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
from torch.autograd import Variable
|
||||||
|
|
||||||
|
# Image Preprocessing
|
||||||
|
transform = transforms.Compose([
|
||||||
|
transforms.Scale(36),
|
||||||
|
transforms.RandomCrop(32),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||||
|
|
||||||
|
# CIFAR-10 Dataset
|
||||||
|
train_dataset = dsets.CIFAR10(root='../data/',
|
||||||
|
train=True,
|
||||||
|
transform=transform,
|
||||||
|
download=True)
|
||||||
|
|
||||||
|
# Data Loader (Input Pipeline)
|
||||||
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||||
|
batch_size=100,
|
||||||
|
shuffle=True)
|
||||||
|
|
||||||
|
# 5x5 Convolution
|
||||||
|
def conv5x5(in_channels, out_channels, stride):
|
||||||
|
return nn.Conv2d(in_channels, out_channels, kernel_size=4,
|
||||||
|
stride=stride, padding=1, bias=False)
|
||||||
|
|
||||||
|
# Discriminator Model
|
||||||
|
class Discriminator(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(Discriminator, self).__init__()
|
||||||
|
self.model = nn.Sequential(
|
||||||
|
conv5x5(3, 16, 2),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
conv5x5(16, 32, 2),
|
||||||
|
nn.BatchNorm2d(32),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
conv5x5(32, 64, 2),
|
||||||
|
nn.BatchNorm2d(64),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
nn.Conv2d(64, 1, kernel_size=4),
|
||||||
|
nn.Sigmoid())
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out = self.model(x)
|
||||||
|
out = out.view(out.size(0), -1)
|
||||||
|
return out
|
||||||
|
|
||||||
|
# 4x4 Transpose convolution
|
||||||
|
def conv_transpose4x4(in_channels, out_channels, stride=1, padding=1, bias=False):
|
||||||
|
return nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4,
|
||||||
|
stride=stride, padding=padding, bias=bias)
|
||||||
|
|
||||||
|
# Generator Model
|
||||||
|
class Generator(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(Generator, self).__init__()
|
||||||
|
self.model = nn.Sequential(
|
||||||
|
conv_transpose4x4(128, 64, padding=0),
|
||||||
|
nn.BatchNorm2d(64),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
conv_transpose4x4(64, 32, 2),
|
||||||
|
nn.BatchNorm2d(32),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
conv_transpose4x4(32, 16, 2),
|
||||||
|
nn.BatchNorm2d(16),
|
||||||
|
nn.ReLU(inplace=True),
|
||||||
|
conv_transpose4x4(16, 3, 2, bias=True),
|
||||||
|
nn.Tanh())
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x.view(x.size(0), 128, 1, 1)
|
||||||
|
out = self.model(x)
|
||||||
|
return out
|
||||||
|
|
||||||
|
discriminator = Discriminator()
|
||||||
|
generator = Generator()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Loss and Optimizer
|
||||||
|
criterion = nn.BCELoss()
|
||||||
|
lr = 0.0002
|
||||||
|
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
|
||||||
|
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
|
||||||
|
|
||||||
|
# Training
|
||||||
|
for epoch in range(50):
|
||||||
|
for i, (images, _) in enumerate(train_loader):
|
||||||
|
images = Variable(images.cuda())
|
||||||
|
real_labels = Variable(torch.ones(images.size(0)))
|
||||||
|
fake_labels = Variable(torch.zeros(images.size(0)))
|
||||||
|
|
||||||
|
# Train the discriminator
|
||||||
|
discriminator.zero_grad()
|
||||||
|
outputs = discriminator(images)
|
||||||
|
real_loss = criterion(outputs, real_labels)
|
||||||
|
real_score = outputs
|
||||||
|
|
||||||
|
noise = Variable(torch.randn(images.size(0), 128))
|
||||||
|
fake_images = generator(noise)
|
||||||
|
outputs = discriminator(fake_images)
|
||||||
|
fake_loss = criterion(outputs, fake_labels)
|
||||||
|
fake_score = outputs
|
||||||
|
|
||||||
|
d_loss = real_loss + fake_loss
|
||||||
|
d_loss.backward()
|
||||||
|
d_optimizer.step()
|
||||||
|
|
||||||
|
# Train the generator
|
||||||
|
generator.zero_grad()
|
||||||
|
noise = Variable(torch.randn(images.size(0), 128))
|
||||||
|
fake_images = generator(noise)
|
||||||
|
outputs = discriminator(fake_images)
|
||||||
|
g_loss = criterion(outputs, real_labels)
|
||||||
|
g_loss.backward()
|
||||||
|
g_optimizer.step()
|
||||||
|
|
||||||
|
if (i+1) % 100 == 0:
|
||||||
|
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, g_loss: %.4f, '
|
||||||
|
'D(x): %.2f, D(G(z)): %.2f'
|
||||||
|
%(epoch, 50, i+1, 500, d_loss.data[0], g_loss.data[0],
|
||||||
|
real_score.data.mean(), fake_score.data.mean()))
|
||||||
|
|
||||||
|
# Save the sampled images
|
||||||
|
torchvision.utils.save_image(fake_images.data,
|
||||||
|
'./data/fake_samples_%d_%d.png' %(epoch+1, i+1))
|
||||||
|
|
||||||
|
# Save the Models
|
||||||
|
torch.save(generator, './generator.pkl')
|
||||||
|
torch.save(discriminator, './discriminator.pkl')
|
Reference in New Issue
Block a user