code for saving the model is added

This commit is contained in:
yunjey
2017-03-11 14:54:46 +09:00
parent 278c13513f
commit 86a0872430
17 changed files with 630 additions and 37 deletions

View File

@ -58,4 +58,7 @@ predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()
plt.show()
# Save the Model
torch.save(model, 'model.pkl')

View File

@ -13,12 +13,12 @@ batch_size = 100
learning_rate = 0.001
# MNIST Dataset (Images and Labels)
train_dataset = dsets.MNIST(root='./data',
train_dataset = dsets.MNIST(root='../data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
test_dataset = dsets.MNIST(root='../data',
train=False,
transform=transforms.ToTensor())
@ -76,4 +76,7 @@ for images, labels in test_loader:
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Model
torch.save(model, 'model.pkl')

View File

@ -14,12 +14,12 @@ batch_size = 100
learning_rate = 0.001
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data',
train_dataset = dsets.MNIST(root='../data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
test_dataset = dsets.MNIST(root='../data',
train=False,
transform=transforms.ToTensor())

View File

@ -14,12 +14,12 @@ batch_size = 100
learning_rate = 0.001
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data',
train_dataset = dsets.MNIST(root='../data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data',
test_dataset = dsets.MNIST(root='../data',
train=False,
transform=transforms.ToTensor())

View File

@ -11,12 +11,12 @@ batch_size = 100
learning_rate = 0.001
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train_dataset = dsets.MNIST(root='../data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
test_dataset = dsets.MNIST(root='../data/',
train=False,
transform=transforms.ToTensor())
@ -77,7 +77,7 @@ for epoch in range(num_epochs):
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
# Test the Model
cnn.eval()
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0
total = 0
for images, labels in test_loader:
@ -85,6 +85,9 @@ for images, labels in test_loader:
outputs = cnn(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
correct += (predicted.cpu() == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Trained Model
torch.save(cnn, 'cnn.pkl')

View File

@ -11,12 +11,12 @@ batch_size = 100
learning_rate = 0.001
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train_dataset = dsets.MNIST(root='../data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
test_dataset = dsets.MNIST(root='../data/',
train=False,
transform=transforms.ToTensor())
@ -77,7 +77,7 @@ for epoch in range(num_epochs):
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
# Test the Model
cnn.eval()
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0
total = 0
for images, labels in test_loader:
@ -87,4 +87,7 @@ for images, labels in test_loader:
total += labels.size(0)
correct += (predicted == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Trained Model
torch.save(cnn, 'cnn.pkl')

View File

@ -14,12 +14,12 @@ transform = transforms.Compose([
transforms.ToTensor()])
# CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(root='./data/',
train_dataset = dsets.CIFAR10(root='../data/',
train=True,
transform=transform,
download=True)
test_dataset = dsets.CIFAR10(root='./data/',
test_dataset = dsets.CIFAR10(root='../data/',
train=False,
transform=transforms.ToTensor())
@ -109,7 +109,7 @@ lr = 0.001
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
# Training
for epoch in range(40):
for epoch in range(80):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())
@ -122,7 +122,7 @@ for epoch in range(40):
optimizer.step()
if (i+1) % 100 == 0:
print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 40, i+1, 500, loss.data[0]))
print ("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" %(epoch+1, 80, i+1, 500, loss.data[0]))
# Decaying Learning Rate
if (epoch+1) % 20 == 0:
@ -130,6 +130,7 @@ for epoch in range(40):
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
# Test
resnet.eval()
correct = 0
total = 0
for images, labels in test_loader:
@ -139,4 +140,7 @@ for images, labels in test_loader:
total += labels.size(0)
correct += (predicted.cpu() == labels).sum()
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
# Save the Model
torch.save(resnet, 'resnet.pkl')

View File

@ -14,12 +14,12 @@ transform = transforms.Compose([
transforms.ToTensor()])
# CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(root='./data/',
train_dataset = dsets.CIFAR10(root='../data/',
train=True,
transform=transform,
download=True)
test_dataset = dsets.CIFAR10(root='./data/',
test_dataset = dsets.CIFAR10(root='../data/',
train=False,
transform=transforms.ToTensor())
@ -130,6 +130,7 @@ for epoch in range(80):
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)
# Test
resnet.eval()
correct = 0
total = 0
for images, labels in test_loader:
@ -139,4 +140,7 @@ for images, labels in test_loader:
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))
# Save the Model
torch.save(resnet, 'resnet.pkl')

View File

@ -16,12 +16,12 @@ num_epochs = 2
learning_rate = 0.01
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train_dataset = dsets.MNIST(root='../data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
test_dataset = dsets.MNIST(root='../data/',
train=False,
transform=transforms.ToTensor())
@ -87,4 +87,7 @@ for images, labels in test_loader:
total += labels.size(0)
correct += (predicted.cpu() == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Model
torch.save(rnn, 'rnn.pkl')

View File

@ -16,12 +16,12 @@ num_epochs = 2
learning_rate = 0.01
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train_dataset = dsets.MNIST(root='../data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
test_dataset = dsets.MNIST(root='../data/',
train=False,
transform=transforms.ToTensor())
@ -87,4 +87,7 @@ for images, labels in test_loader:
total += labels.size(0)
correct += (predicted == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Model
torch.save(rnn, 'rnn.pkl')

View File

@ -16,12 +16,12 @@ num_epochs = 2
learning_rate = 0.003
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train_dataset = dsets.MNIST(root='../data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
test_dataset = dsets.MNIST(root='../data/',
train=False,
transform=transforms.ToTensor())
@ -88,4 +88,7 @@ for images, labels in test_loader:
total += labels.size(0)
correct += (predicted.cpu() == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Model
torch.save(rnn, 'rnn.pkl')

View File

@ -16,12 +16,12 @@ num_epochs = 2
learning_rate = 0.003
# MNIST Dataset
train_dataset = dsets.MNIST(root='./data/',
train_dataset = dsets.MNIST(root='../data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data/',
test_dataset = dsets.MNIST(root='../data/',
train=False,
transform=transforms.ToTensor())
@ -88,4 +88,7 @@ for images, labels in test_loader:
total += labels.size(0)
correct += (predicted == labels).sum()
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
print('Test Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))
# Save the Model
torch.save(rnn, 'rnn.pkl')

View File

@ -0,0 +1,46 @@
import torch
import os
class Dictionary(object):
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __len__(self):
return len(self.word2idx)
class Corpus(object):
def __init__(self, path='./data'):
self.dictionary = Dictionary()
self.train = os.path.join(path, 'train.txt')
self.test = os.path.join(path, 'test.txt')
def get_data(self, path, batch_size=20):
# Add words to the dictionary
with open(path, 'r') as f:
tokens = 0
for line in f:
words = line.split() + ['<eos>']
tokens += len(words)
for word in words:
self.dictionary.add_word(word)
# Tokenize the file content
ids = torch.LongTensor(tokens)
token = 0
with open(path, 'r') as f:
for line in f:
words = line.split() + ['<eos>']
for word in words:
ids[token] = self.dictionary.word2idx[word]
token += 1
num_batches = ids.size(0) // batch_size
ids = ids[:num_batches*batch_size]
return ids.view(batch_size, -1)

View File

@ -0,0 +1,124 @@
# RNN Based Language Model on Penn Treebank dataset.
# Some part of the code was referenced from below.
# https://github.com/pytorch/examples/tree/master/word_language_model
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
from data_utils import Dictionary, Corpus
# Hyper Parameters
embed_size = 128
hidden_size = 1024
num_layers = 1
num_epochs = 5
num_samples = 1000 # number of words to be sampled
batch_size = 20
seq_length = 30
learning_rate = 0.002
# Load Penn Treebank Dataset
train_path = './data/train.txt'
sample_path = './sample.txt'
corpus = Corpus()
ids = corpus.get_data(train_path, batch_size)
vocab_size = len(corpus.dictionary)
num_batches = ids.size(1) // seq_length
# RNN Based Language Model
class RNNLM(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, num_layers):
super(RNNLM, self).__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
self.init_weights()
def init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
self.linear.bias.data.fill_(0)
self.linear.weight.data.uniform_(-0.1, 0.1)
def forward(self, x, h):
# Embed word ids to vectors
x = self.embed(x)
# Forward propagate RNN
out, h = self.lstm(x, h)
# Reshape output to (batch_size*sequence_length, hidden_size)
out = out.contiguous().view(out.size(0)*out.size(1), out.size(2))
# Decode hidden states of all time step
out = self.linear(out)
return out, h
model = RNNLM(vocab_size, embed_size, hidden_size, num_layers)
model.cuda()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Truncated Backpropagation
def detach(states):
return [Variable(state.data) for state in states]
# Training
for epoch in range(num_epochs):
# Initial hidden and memory states
states = (Variable(torch.zeros(num_layers, batch_size, hidden_size)).cuda(),
Variable(torch.zeros(num_layers, batch_size, hidden_size)).cuda())
for i in range(0, ids.size(1) - seq_length, seq_length):
# Get batch inputs and targets
inputs = Variable(ids[:, i:i+seq_length]).cuda()
targets = Variable(ids[:, (i+1):(i+1)+seq_length].contiguous()).cuda()
# Forward + Backward + Optimize
model.zero_grad()
states = detach(states)
outputs, states = model(inputs, states)
loss = criterion(outputs, targets.view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 0.5)
optimizer.step()
step = (i+1) // seq_length
if step % 100 == 0:
print ('Epoch [%d/%d], Step[%d/%d], Loss: %.3f, Perplexity: %5.2f' %
(epoch+1, num_epochs, step, num_batches, loss.data[0], np.exp(loss.data[0])))
# Sampling
with open(sample_path, 'w') as f:
# Set intial hidden ane memory states
state = (Variable(torch.zeros(num_layers, 1, hidden_size)).cuda(),
Variable(torch.zeros(num_layers, 1, hidden_size)).cuda())
# Select one word id randomly
prob = torch.ones(vocab_size)
input = Variable(torch.multinomial(prob, num_samples=1).unsqueeze(1),
volatile=True).cuda()
for i in range(num_samples):
# Forward propagate rnn
output, state = model(input, state)
# Sample a word id
prob = output.squeeze().data.exp().cpu()
word_id = torch.multinomial(prob, 1)[0]
# Feed sampled word id to next time step
input.data.fill_(word_id)
# File write
word = corpus.dictionary.idx2word[word_id]
word = '\n' if word == '<eos>' else word + ' '
f.write(word)
if (i+1) % 100 == 0:
print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path))
# Save the Trained Model
torch.save(model, 'model.pkl')

View File

@ -0,0 +1,123 @@
# Some part of the code was referenced from below.
# https://github.com/pytorch/examples/tree/master/word_language_model
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
from data_utils import Dictionary, Corpus
# Hyper Parameters
embed_size = 128
hidden_size = 1024
num_layers = 1
num_epochs = 5
num_samples = 1000 # number of words to be sampled
batch_size = 20
seq_length = 30
learning_rate = 0.002
# Load Penn Treebank Dataset
train_path = './data/train.txt'
sample_path = './sample.txt'
corpus = Corpus()
ids = corpus.get_data(train_path, batch_size)
vocab_size = len(corpus.dictionary)
num_batches = ids.size(1) // seq_length
# RNN Based Language Model
class RNNLM(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, num_layers):
super(RNNLM, self).__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size)
self.init_weights()
def init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
self.linear.bias.data.fill_(0)
self.linear.weight.data.uniform_(-0.1, 0.1)
def forward(self, x, h):
# Embed word ids to vectors
x = self.embed(x)
# Forward propagate RNN
out, h = self.lstm(x, h)
# Reshape output to (batch_size*sequence_length, hidden_size)
out = out.contiguous().view(out.size(0)*out.size(1), out.size(2))
# Decode hidden states of all time step
out = self.linear(out)
return out, h
model = RNNLM(vocab_size, embed_size, hidden_size, num_layers)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Truncated Backpropagation
def detach(states):
return [Variable(state.data) for state in states]
# Training
for epoch in range(num_epochs):
# Initial hidden and memory states
states = (Variable(torch.zeros(num_layers, batch_size, hidden_size)),
Variable(torch.zeros(num_layers, batch_size, hidden_size)))
for i in range(0, ids.size(1) - seq_length, seq_length):
# Get batch inputs and targets
inputs = Variable(ids[:, i:i+seq_length])
targets = Variable(ids[:, (i+1):(i+1)+seq_length].contiguous())
# Forward + Backward + Optimize
model.zero_grad()
states = detach(states)
outputs, states = model(inputs, states)
loss = criterion(outputs, targets.view(-1))
loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 0.5)
optimizer.step()
step = (i+1) // seq_length
if step % 100 == 0:
print ('Epoch [%d/%d], Step[%d/%d], Loss: %.3f, Perplexity: %5.2f' %
(epoch+1, num_epochs, step, num_batches, loss.data[0], np.exp(loss.data[0])))
# Sampling
with open(sample_path, 'w') as f:
# Set intial hidden ane memory states
state = (Variable(torch.zeros(num_layers, 1, hidden_size)),
Variable(torch.zeros(num_layers, 1, hidden_size)))
# Select one word id randomly
prob = torch.ones(vocab_size)
input = Variable(torch.multinomial(prob, num_samples=1).unsqueeze(1),
volatile=True)
for i in range(num_samples):
# Forward propagate rnn
output, state = model(input, state)
# Sample a word id
prob = output.squeeze().data.exp()
word_id = torch.multinomial(prob, 1)[0]
# Feed sampled word id to next time step
input.data.fill_(word_id)
# File write
word = corpus.dictionary.idx2word[word_id]
word = '\n' if word == '<eos>' else word + ' '
f.write(word)
if (i+1) % 100 == 0:
print('Sampled [%d/%d] words and save to %s'%(i+1, num_samples, sample_path))
# Save the Trained Model
torch.save(model, 'model.pkl')

View File

@ -0,0 +1,134 @@
import torch
import torchvision
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# Image Preprocessing
transform = transforms.Compose([
transforms.Scale(36),
transforms.RandomCrop(32),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
# CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(root='../data/',
train=True,
transform=transform,
download=True)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
# 5x5 Convolution
def conv5x5(in_channels, out_channels, stride):
return nn.Conv2d(in_channels, out_channels, kernel_size=4,
stride=stride, padding=1, bias=False)
# Discriminator Model
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
conv5x5(3, 16, 2),
nn.LeakyReLU(0.2, inplace=True),
conv5x5(16, 32, 2),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True),
conv5x5(32, 64, 2),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 1, kernel_size=4),
nn.Sigmoid())
def forward(self, x):
out = self.model(x)
out = out.view(out.size(0), -1)
return out
# 4x4 Transpose convolution
def conv_transpose4x4(in_channels, out_channels, stride=1, padding=1, bias=False):
return nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4,
stride=stride, padding=padding, bias=bias)
# Generator Model
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
conv_transpose4x4(128, 64, padding=0),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
conv_transpose4x4(64, 32, 2),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
conv_transpose4x4(32, 16, 2),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
conv_transpose4x4(16, 3, 2, bias=True),
nn.Tanh())
def forward(self, x):
x = x.view(x.size(0), 128, 1, 1)
out = self.model(x)
return out
discriminator = Discriminator()
generator = Generator()
discriminator.cuda()
generator.cuda()
# Loss and Optimizer
criterion = nn.BCELoss()
lr = 0.002
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
# Training
for epoch in range(50):
for i, (images, _) in enumerate(train_loader):
images = Variable(images.cuda())
real_labels = Variable(torch.ones(images.size(0)).cuda())
fake_labels = Variable(torch.zeros(images.size(0)).cuda())
# Train the discriminator
discriminator.zero_grad()
outputs = discriminator(images)
real_loss = criterion(outputs, real_labels)
real_score = outputs
noise = Variable(torch.randn(images.size(0), 128).cuda())
fake_images = generator(noise)
outputs = discriminator(fake_images)
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
d_loss = real_loss + fake_loss
d_loss.backward()
d_optimizer.step()
# Train the generator
generator.zero_grad()
noise = Variable(torch.randn(images.size(0), 128).cuda())
fake_images = generator(noise)
outputs = discriminator(fake_images)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
g_optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, g_loss: %.4f, '
'D(x): %.2f, D(G(z)): %.2f'
%(epoch, 50, i+1, 500, d_loss.data[0], g_loss.data[0],
real_score.cpu().data.mean(), fake_score.cpu().data.mean()))
# Save the sampled images
torchvision.utils.save_image(fake_images.data,
'./data/fake_samples_%d_%d.png' %(epoch+1, i+1))
# Save the Models
torch.save(generator, './generator.pkl')
torch.save(discriminator, './discriminator.pkl')

View File

@ -0,0 +1,134 @@
import torch
import torchvision
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
# Image Preprocessing
transform = transforms.Compose([
transforms.Scale(36),
transforms.RandomCrop(32),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
# CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(root='../data/',
train=True,
transform=transform,
download=True)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
# 5x5 Convolution
def conv5x5(in_channels, out_channels, stride):
return nn.Conv2d(in_channels, out_channels, kernel_size=4,
stride=stride, padding=1, bias=False)
# Discriminator Model
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
conv5x5(3, 16, 2),
nn.LeakyReLU(0.2, inplace=True),
conv5x5(16, 32, 2),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True),
conv5x5(32, 64, 2),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 1, kernel_size=4),
nn.Sigmoid())
def forward(self, x):
out = self.model(x)
out = out.view(out.size(0), -1)
return out
# 4x4 Transpose convolution
def conv_transpose4x4(in_channels, out_channels, stride=1, padding=1, bias=False):
return nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4,
stride=stride, padding=padding, bias=bias)
# Generator Model
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.model = nn.Sequential(
conv_transpose4x4(128, 64, padding=0),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
conv_transpose4x4(64, 32, 2),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
conv_transpose4x4(32, 16, 2),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
conv_transpose4x4(16, 3, 2, bias=True),
nn.Tanh())
def forward(self, x):
x = x.view(x.size(0), 128, 1, 1)
out = self.model(x)
return out
discriminator = Discriminator()
generator = Generator()
# Loss and Optimizer
criterion = nn.BCELoss()
lr = 0.0002
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
# Training
for epoch in range(50):
for i, (images, _) in enumerate(train_loader):
images = Variable(images.cuda())
real_labels = Variable(torch.ones(images.size(0)))
fake_labels = Variable(torch.zeros(images.size(0)))
# Train the discriminator
discriminator.zero_grad()
outputs = discriminator(images)
real_loss = criterion(outputs, real_labels)
real_score = outputs
noise = Variable(torch.randn(images.size(0), 128))
fake_images = generator(noise)
outputs = discriminator(fake_images)
fake_loss = criterion(outputs, fake_labels)
fake_score = outputs
d_loss = real_loss + fake_loss
d_loss.backward()
d_optimizer.step()
# Train the generator
generator.zero_grad()
noise = Variable(torch.randn(images.size(0), 128))
fake_images = generator(noise)
outputs = discriminator(fake_images)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
g_optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [%d/%d], Step[%d/%d], d_loss: %.4f, g_loss: %.4f, '
'D(x): %.2f, D(G(z)): %.2f'
%(epoch, 50, i+1, 500, d_loss.data[0], g_loss.data[0],
real_score.data.mean(), fake_score.data.mean()))
# Save the sampled images
torchvision.utils.save_image(fake_images.data,
'./data/fake_samples_%d_%d.png' %(epoch+1, i+1))
# Save the Models
torch.save(generator, './generator.pkl')
torch.save(discriminator, './discriminator.pkl')