mirror of
https://github.com/yunjey/pytorch-tutorial.git
synced 2025-07-07 01:54:41 +08:00
image captionig added
This commit is contained in:
97
tutorials/09 - Image Captioning/data.py
Normal file
97
tutorials/09 - Image Captioning/data.py
Normal file
@ -0,0 +1,97 @@
|
|||||||
|
import torch
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
import torch.utils.data as data
|
||||||
|
import os
|
||||||
|
import pickle
|
||||||
|
import numpy as np
|
||||||
|
import nltk
|
||||||
|
from PIL import Image
|
||||||
|
from vocab import Vocabulary
|
||||||
|
from pycocotools.coco import COCO
|
||||||
|
|
||||||
|
|
||||||
|
class CocoDataset(data.Dataset):
|
||||||
|
"""COCO Custom Dataset compatible with torch.utils.data.DataLoader."""
|
||||||
|
def __init__(self, root, json, vocab, transform=None):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
root: image directory.
|
||||||
|
json: coco annotation file path.
|
||||||
|
vocab: vocabulary wrapper.
|
||||||
|
transform: transformer for image.
|
||||||
|
"""
|
||||||
|
self.root = root
|
||||||
|
self.coco = COCO(json)
|
||||||
|
self.ids = list(self.coco.anns.keys())
|
||||||
|
self.vocab = vocab
|
||||||
|
self.transform = transform
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
"""This function should return one data pair(image and caption)."""
|
||||||
|
coco = self.coco
|
||||||
|
vocab = self.vocab
|
||||||
|
ann_id = self.ids[index]
|
||||||
|
caption = coco.anns[ann_id]['caption']
|
||||||
|
img_id = coco.anns[ann_id]['image_id']
|
||||||
|
path = coco.loadImgs(img_id)[0]['file_name']
|
||||||
|
|
||||||
|
image = Image.open(os.path.join(self.root, path)).convert('RGB')
|
||||||
|
if self.transform is not None:
|
||||||
|
image = self.transform(image)
|
||||||
|
|
||||||
|
# Convert caption (string) to word ids.
|
||||||
|
tokens = nltk.tokenize.word_tokenize(str(caption).lower())
|
||||||
|
caption = []
|
||||||
|
caption.append(vocab('<start>'))
|
||||||
|
caption.extend([vocab(token) for token in tokens])
|
||||||
|
caption.append(vocab('<end>'))
|
||||||
|
target = torch.Tensor(caption)
|
||||||
|
return image, target
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.ids)
|
||||||
|
|
||||||
|
|
||||||
|
def collate_fn(data):
|
||||||
|
"""Build mini-batch tensors from a list of (image, caption) tuples.
|
||||||
|
Args:
|
||||||
|
data: list of (image, caption) tuple.
|
||||||
|
- image: torch tensor of shape (3, 256, 256).
|
||||||
|
- caption: torch tensor of shape (?); variable length.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
images: torch tensor of shape (batch_size, 3, 256, 256).
|
||||||
|
targets: torch tensor of shape (batch_size, padded_length).
|
||||||
|
lengths: list; valid length for each padded caption.
|
||||||
|
"""
|
||||||
|
# Sort a data list by caption length
|
||||||
|
data.sort(key=lambda x: len(x[1]), reverse=True)
|
||||||
|
images, captions = zip(*data)
|
||||||
|
|
||||||
|
# Merge images (convert tuple of 3D tensor to 4D tensor)
|
||||||
|
images = torch.stack(images, 0)
|
||||||
|
|
||||||
|
# Merget captions (convert tuple of 1D tensor to 2D tensor)
|
||||||
|
lengths = [len(cap) for cap in captions]
|
||||||
|
targets = torch.zeros(len(captions), max(lengths)).long()
|
||||||
|
for i, cap in enumerate(captions):
|
||||||
|
end = lengths[i]
|
||||||
|
targets[i, :end] = cap[:end]
|
||||||
|
return images, targets, lengths
|
||||||
|
|
||||||
|
|
||||||
|
def get_loader(root, json, vocab, transform, batch_size=100, shuffle=True, num_workers=2):
|
||||||
|
"""Returns torch.utils.data.DataLoader for custom coco dataset."""
|
||||||
|
# COCO custom dataset
|
||||||
|
coco = CocoDataset(root=root,
|
||||||
|
json=json,
|
||||||
|
vocab = vocab,
|
||||||
|
transform=transform)
|
||||||
|
|
||||||
|
# Data loader
|
||||||
|
data_loader = torch.utils.data.DataLoader(dataset=coco,
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
num_workers=num_workers,
|
||||||
|
collate_fn=collate_fn)
|
||||||
|
return data_loader
|
35
tutorials/09 - Image Captioning/resize.py
Normal file
35
tutorials/09 - Image Captioning/resize.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
from PIL import Image
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def resize_image(image, size):
|
||||||
|
"""Resizes an image to the given size."""
|
||||||
|
return image.resize(size, Image.ANTIALIAS)
|
||||||
|
|
||||||
|
def resize_images(image_dir, output_dir, size):
|
||||||
|
"""Resizes the images in the image_dir and save into the output_dir."""
|
||||||
|
if not os.path.exists(output_dir):
|
||||||
|
os.makedirs(output_dir)
|
||||||
|
|
||||||
|
images = os.listdir(image_dir)
|
||||||
|
num_images = len(images)
|
||||||
|
for i, image in enumerate(images):
|
||||||
|
with open(os.path.join(image_dir, image), 'r+b') as f:
|
||||||
|
with Image.open(f) as img:
|
||||||
|
img = resize_image(img, size)
|
||||||
|
img.save(
|
||||||
|
os.path.join(output_dir, image), img.format)
|
||||||
|
if i % 100 == 0:
|
||||||
|
print ('[%d/%d] Resized the images and saved into %s.'
|
||||||
|
%(i, num_images, output_dir))
|
||||||
|
|
||||||
|
def main():
|
||||||
|
splits = ['train', 'val']
|
||||||
|
for split in splits:
|
||||||
|
image_dir = './data/%s2014/' %split
|
||||||
|
output_dir = './data/%s2014resized' %split
|
||||||
|
resize_images(image_dir, output_dir, (256, 256))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
69
tutorials/09 - Image Captioning/train.py
Normal file
69
tutorials/09 - Image Captioning/train.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
from data import get_loader
|
||||||
|
from vocab import Vocabulary
|
||||||
|
from models import EncoderCNN, DecoderRNN
|
||||||
|
from torch.autograd import Variable
|
||||||
|
from torch.nn.utils.rnn import pack_padded_sequence
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
import torchvision.transforms as T
|
||||||
|
import pickle
|
||||||
|
|
||||||
|
# Hyper Parameters
|
||||||
|
num_epochs = 5
|
||||||
|
batch_size = 100
|
||||||
|
embed_size = 128
|
||||||
|
hidden_size = 512
|
||||||
|
num_layers = 1
|
||||||
|
learning_rate = 0.001
|
||||||
|
train_image_path = './data/train2014resized/'
|
||||||
|
train_json_path = './data/annotations/captions_train2014.json'
|
||||||
|
|
||||||
|
# Image Preprocessing
|
||||||
|
transform = T.Compose([
|
||||||
|
T.RandomHorizontalFlip(),
|
||||||
|
T.ToTensor(),
|
||||||
|
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
|
||||||
|
|
||||||
|
# Load Vocabulary Wrapper
|
||||||
|
with open('./data/vocab.pkl', 'rb') as f:
|
||||||
|
vocab = pickle.load(f)
|
||||||
|
|
||||||
|
# Build Dataset Loader
|
||||||
|
train_loader = get_loader(train_image_path, train_json_path, vocab, transform,
|
||||||
|
batch_size=batch_size, shuffle=True, num_workers=2)
|
||||||
|
total_step = len(train_loader)
|
||||||
|
|
||||||
|
# Build Models
|
||||||
|
encoder = EncoderCNN(embed_size)
|
||||||
|
decoder = DecoderRNN(embed_size, hidden_size, len(vocab), num_layers)
|
||||||
|
encoder.cuda()
|
||||||
|
decoder.cuda()
|
||||||
|
|
||||||
|
# Loss and Optimizer
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.Adam(decoder.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
# Train the Decoder
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
for i, (images, captions, lengths) in enumerate(train_loader):
|
||||||
|
# Set mini-batch dataset
|
||||||
|
images = Variable(images).cuda()
|
||||||
|
captions = Variable(captions).cuda()
|
||||||
|
targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
|
||||||
|
|
||||||
|
# Forward, Backward and Optimize
|
||||||
|
decoder.zero_grad()
|
||||||
|
features = encoder(images)
|
||||||
|
outputs = decoder(features, captions, lengths)
|
||||||
|
loss = criterion(outputs, targets)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if i % 100 == 0:
|
||||||
|
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
|
||||||
|
%(epoch, num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0])))
|
||||||
|
|
||||||
|
# Save the Model
|
||||||
|
torch.save(decoder, 'decoder.pkl')
|
||||||
|
torch.save(encoder, 'encoder.pkl')
|
65
tutorials/09 - Image Captioning/vocab.py
Normal file
65
tutorials/09 - Image Captioning/vocab.py
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
# Create a vocabulary wrapper
|
||||||
|
import nltk
|
||||||
|
import pickle
|
||||||
|
from collections import Counter
|
||||||
|
from pycocotools.coco import COCO
|
||||||
|
|
||||||
|
|
||||||
|
class Vocabulary(object):
|
||||||
|
"""Simple vocabulary wrapper."""
|
||||||
|
def __init__(self):
|
||||||
|
self.word2idx = {}
|
||||||
|
self.idx2word = {}
|
||||||
|
self.idx = 0
|
||||||
|
|
||||||
|
def add_word(self, word):
|
||||||
|
if not word in self.word2idx:
|
||||||
|
self.word2idx[word] = self.idx
|
||||||
|
self.idx2word[self.idx] = word
|
||||||
|
self.idx += 1
|
||||||
|
|
||||||
|
def __call__(self, word):
|
||||||
|
if not word in self.word2idx:
|
||||||
|
return self.word2idx['<unk>']
|
||||||
|
return self.word2idx[word]
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.word2idx)
|
||||||
|
|
||||||
|
def build_vocab(json, threshold):
|
||||||
|
"""Build a simple vocabulary wrapper."""
|
||||||
|
coco = COCO(json)
|
||||||
|
counter = Counter()
|
||||||
|
ids = coco.anns.keys()
|
||||||
|
for i, id in enumerate(ids):
|
||||||
|
caption = str(coco.anns[id]['caption'])
|
||||||
|
tokens = nltk.tokenize.word_tokenize(caption.lower())
|
||||||
|
counter.update(tokens)
|
||||||
|
|
||||||
|
if i % 1000 == 0:
|
||||||
|
print("[%d/%d] tokenized the captions." %(i, len(ids)))
|
||||||
|
|
||||||
|
# Discard if the occurrence of the word is less than min_word_cnt.
|
||||||
|
words = [word for word, cnt in counter.items() if cnt >= threshold]
|
||||||
|
|
||||||
|
# Create a vocab wrapper and add some special tokens.
|
||||||
|
vocab = Vocabulary()
|
||||||
|
vocab.add_word('<pad>')
|
||||||
|
vocab.add_word('<start>')
|
||||||
|
vocab.add_word('<end>')
|
||||||
|
vocab.add_word('<unk>')
|
||||||
|
|
||||||
|
# Add words to the vocabulary.
|
||||||
|
for i, word in enumerate(words):
|
||||||
|
vocab.add_word(word)
|
||||||
|
return vocab
|
||||||
|
|
||||||
|
def main():
|
||||||
|
vocab = create_vocab(json='./data/annotations/captions_train2014.json',
|
||||||
|
threshold=4)
|
||||||
|
with open('./data/vocab.pkl', 'wb') as f:
|
||||||
|
pickle.dump(vocab, f, pickle.HIGHEST_PROTOCOL)
|
||||||
|
print("Saved vocabulary file to ", './data/vocab.pkl')
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Reference in New Issue
Block a user