4.6 KiB
题目地址
https://leetcode-cn.com/problems/two-sum/
只用数组和set还是不够的!
第1题. 两数之和
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
思路
很明显暴力的解法是两层for循环查找,时间复杂度是O(n^2)。
建议大家做这道题目之前,先做一下这两道
242. 有效的字母异位词 这道题目是用数组作为哈希表来解决哈希问题,349. 两个数组的交集这道题目是通过set作为哈希表来解决哈希问题。
本题呢,则要使用map,那么来看一下使用数组和set来做哈希法的局限。
- 数组的大小是受限制的,而且如果元素很少,而哈希值太大会造成内存空间的浪费。
- set是一个集合,里面放的元素只能是一个key,而两数之和这道题目,不仅要判断y是否存在而且还要记录y的下表位置,因为要返回x 和 y的下表。所以set 也不能用。
此时就要选择另一种数据结构:map ,map是一种key value的存储结构,可以用key保存数值,用value在保存数值所在的下表。
C++中map,有三种类型:
映射 | 底层实现 | 是否有序 | 数值是否可以重复 | 能否更改数值 | 查询效率 | 增删效率 |
---|---|---|---|---|---|---|
std::map | 红黑树 | key有序 | key不可重复 | key不可修改 | O(logn) | O(logn) |
std::multimap | 红黑树 | key有序 | key可重复 | key不可修改 | O(logn) | O(logn) |
std::unordered_map | 哈希表 | key无序 | key不可重复 | key不可修改 | O(1) | O(1) |
std::unordered_map 底层实现为哈希表,std::map 和std::multimap 的底层实现是红黑树。
同理,std::map 和std::multimap 的key也是有序的(这个问题也经常作为面试题,考察对语言容器底层的理解)。 更多哈希表的理论知识请看关于哈希表,你该了解这些!。
这道题目中并不需要key有序,选择std::unordered_map 效率更高!
解题思路动画如下:
C++代码
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
std::unordered_map <int,int> map;
for(int i = 0; i < nums.size(); i++) {
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second, i};
}
map.insert(pair<int, int>(nums[i], i));
}
return {};
}
};
一般解法
代码:
优化解法
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
for (int i = 0; i < nums.size(); i ++) {
for (int j = i + 1; j < nums.size(); j++) {
if (nums[i] + nums[j] == target) {
return {i, j};
}
}
}
return {};
}
};
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
std::map <int,int> map;
for(int i = 0; i < nums.size(); i++) {
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second,i};
}
map.insert({nums, i});
}
return {};
}
};
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
std::unordered_map <int,int> map;
for(int i = 0; i < nums.size(); i++) {
auto iter = map.find(target - nums[i]);
if(iter != map.end()) {
return {iter->second, i};
break;
}
map.emplace(nums[i], i);
}
return {};
}
};
更过算法干货文章持续更新,可以微信搜索「代码随想录」第一时间围观,关注后,回复「Java」「C++」 「python」「简历模板」「数据结构与算法」等等,就可以获得我多年整理的学习资料。