Files
leetcode-master/problems/0090.子集II.md
2023-05-29 15:11:30 +08:00

649 lines
18 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<a href="https://programmercarl.com/other/xunlianying.html" target="_blank">
<img src="../pics/训练营.png" width="1000"/>
</a>
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
# 90.子集II
[力扣题目链接](https://leetcode.cn/problems/subsets-ii/)
给定一个可能包含重复元素的整数数组 nums返回该数组所有可能的子集幂集
说明:解集不能包含重复的子集。
示例:
* 输入: [1,2,2]
* 输出:
[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
# 算法公开课
**《代码随想录》算法视频公开课:[回溯算法解决子集问题,如何去重?| LeetCode90.子集II](https://www.bilibili.com/video/BV1vm4y1F71J/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
## 思路
做本题之前一定要先做[78.子集](https://programmercarl.com/0078.子集.html)。
这道题目和[78.子集](https://programmercarl.com/0078.子集.html)区别就是集合里有重复元素了,而且求取的子集要去重。
那么关于回溯算法中的去重问题,**在[40.组合总和II](https://programmercarl.com/0040.组合总和II.html)中已经详细讲解过了,和本题是一个套路**。
**剧透一下,后期要讲解的排列问题里去重也是这个套路,所以理解“树层去重”和“树枝去重”非常重要**
用示例中的[1, 2, 2] 来举例,如图所示: **注意去重需要先对集合排序**
![90.子集II](https://code-thinking-1253855093.file.myqcloud.com/pics/20201124195411977.png)
从图中可以看出同一树层上重复取2 就要过滤掉同一树枝上就可以重复取2因为同一树枝上元素的集合才是唯一子集
本题就是其实就是[回溯算法:求子集问题!](https://programmercarl.com/0078.子集.html)的基础上加上了去重,去重我们在[回溯算法:求组合总和(三)](https://programmercarl.com/0040.组合总和II.html)也讲过了,所以我就直接给出代码了:
C++代码如下:
```CPP
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {
result.push_back(path);
for (int i = startIndex; i < nums.size(); i++) {
// used[i - 1] == true说明同一树枝candidates[i - 1]使用过
// used[i - 1] == false说明同一树层candidates[i - 1]使用过
// 而我们要对同一树层使用过的元素进行跳过
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
continue;
}
path.push_back(nums[i]);
used[i] = true;
backtracking(nums, i + 1, used);
used[i] = false;
path.pop_back();
}
}
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
result.clear();
path.clear();
vector<bool> used(nums.size(), false);
sort(nums.begin(), nums.end()); // 去重需要排序
backtracking(nums, 0, used);
return result;
}
};
```
* 时间复杂度: O(n * 2^n)
* 空间复杂度: O(n)
使用set去重的版本。
```CPP
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
result.push_back(path);
unordered_set<int> uset;
for (int i = startIndex; i < nums.size(); i++) {
if (uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]);
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
result.clear();
path.clear();
sort(nums.begin(), nums.end()); // 去重需要排序
backtracking(nums, 0);
return result;
}
};
```
## 补充
本题也可以不使用used数组来去重因为递归的时候下一个startIndex是i+1而不是0。
如果要是全排列的话每次要从0开始遍历为了跳过已入栈的元素需要使用used。
代码如下:
```CPP
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
result.push_back(path);
for (int i = startIndex; i < nums.size(); i++) {
// 而我们要对同一树层使用过的元素进行跳过
if (i > startIndex && nums[i] == nums[i - 1] ) { // 注意这里使用i > startIndex
continue;
}
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
result.clear();
path.clear();
sort(nums.begin(), nums.end()); // 去重需要排序
backtracking(nums, 0);
return result;
}
};
```
## 总结
其实这道题目的知识点我们之前都讲过了如果之前讲过的子集问题和去重问题都掌握的好这道题目应该分分钟AC。
当然本题去重的逻辑,也可以这么写
```cpp
if (i > startIndex && nums[i] == nums[i - 1] ) {
continue;
}
```
## 其他语言版本
### Java
使用used数组
```java
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used;
public List<List<Integer>> subsetsWithDup(int[] nums) {
if (nums.length == 0){
result.add(path);
return result;
}
Arrays.sort(nums);
used = new boolean[nums.length];
subsetsWithDupHelper(nums, 0);
return result;
}
private void subsetsWithDupHelper(int[] nums, int startIndex){
result.add(new ArrayList<>(path));
if (startIndex >= nums.length){
return;
}
for (int i = startIndex; i < nums.length; i++){
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]){
continue;
}
path.add(nums[i]);
used[i] = true;
subsetsWithDupHelper(nums, i + 1);
path.removeLast();
used[i] = false;
}
}
}
```
不使用used数组
```java
class Solution {
List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> subsetsWithDup( int[] nums ) {
Arrays.sort( nums );
subsetsWithDupHelper( nums, 0 );
return res;
}
private void subsetsWithDupHelper( int[] nums, int start ) {
res.add( new ArrayList<>( path ) );
for ( int i = start; i < nums.length; i++ ) {
// 跳过当前树层使用过的、相同的元素
if ( i > start && nums[i - 1] == nums[i] ) {
continue;
}
path.add( nums[i] );
subsetsWithDupHelper( nums, i + 1 );
path.removeLast();
}
}
}
```
#### Python3
回溯 利用used数组去重
```python
class Solution:
def subsetsWithDup(self, nums):
result = []
path = []
used = [False] * len(nums)
nums.sort() # 去重需要排序
self.backtracking(nums, 0, used, path, result)
return result
def backtracking(self, nums, startIndex, used, path, result):
result.append(path[:]) # 收集子集
for i in range(startIndex, len(nums)):
# used[i - 1] == True说明同一树枝 nums[i - 1] 使用过
# used[i - 1] == False说明同一树层 nums[i - 1] 使用过
# 而我们要对同一树层使用过的元素进行跳过
if i > 0 and nums[i] == nums[i - 1] and not used[i - 1]:
continue
path.append(nums[i])
used[i] = True
self.backtracking(nums, i + 1, used, path, result)
used[i] = False
path.pop()
```
回溯 利用集合去重
```python
class Solution:
def subsetsWithDup(self, nums):
result = []
path = []
nums.sort() # 去重需要排序
self.backtracking(nums, 0, path, result)
return result
def backtracking(self, nums, startIndex, path, result):
result.append(path[:]) # 收集子集
uset = set()
for i in range(startIndex, len(nums)):
if nums[i] in uset:
continue
uset.add(nums[i])
path.append(nums[i])
self.backtracking(nums, i + 1, path, result)
path.pop()
```
回溯 利用递归的时候下一个startIndex是i+1而不是0去重
```python
class Solution:
def subsetsWithDup(self, nums):
result = []
path = []
nums.sort() # 去重需要排序
self.backtracking(nums, 0, path, result)
return result
def backtracking(self, nums, startIndex, path, result):
result.append(path[:]) # 收集子集
for i in range(startIndex, len(nums)):
# 而我们要对同一树层使用过的元素进行跳过
if i > startIndex and nums[i] == nums[i - 1]:
continue
path.append(nums[i])
self.backtracking(nums, i + 1, path, result)
path.pop()
```
### Go
```Go
var (
path []int
res [][]int
)
func subsetsWithDup(nums []int) [][]int {
path, res = make([]int, 0, len(nums)), make([][]int, 0)
sort.Ints(nums)
dfs(nums, 0)
return res
}
func dfs(nums []int, start int) {
tmp := make([]int, len(path))
copy(tmp, path)
res = append(res, tmp)
for i := start; i < len(nums); i++ {
if i != start && nums[i] == nums[i-1] {
continue
}
path = append(path, nums[i])
dfs(nums, i+1)
path = path[:len(path)-1]
}
}
```
### Javascript
```Javascript
var subsetsWithDup = function(nums) {
let result = []
let path = []
let sortNums = nums.sort((a, b) => {
return a - b
})
function backtracing(startIndex, sortNums) {
result.push([...path])
if(startIndex > nums.length - 1) {
return
}
for(let i = startIndex; i < nums.length; i++) {
if(i > startIndex && nums[i] === nums[i - 1]) {
continue
}
path.push(nums[i])
backtracing(i + 1, sortNums)
path.pop()
}
}
backtracing(0, sortNums)
return result
};
```
### TypeScript
```typescript
function subsetsWithDup(nums: number[]): number[][] {
nums.sort((a, b) => a - b);
const resArr: number[][] = [];
backTraking(nums, 0, []);
return resArr;
function backTraking(nums: number[], startIndex: number, route: number[]): void {
resArr.push([...route]);
let length: number = nums.length;
if (startIndex === length) return;
for (let i = startIndex; i < length; i++) {
if (i > startIndex && nums[i] === nums[i - 1]) continue;
route.push(nums[i]);
backTraking(nums, i + 1, route);
route.pop();
}
}
};
```
set去重版本:
```typescript
// 使用set去重版本
function subsetsWithDup(nums: number[]): number[][] {
const result: number[][] = [];
const path: number[] = [];
// 去重之前先排序
nums.sort((a, b) => a - b);
function backTracking(startIndex: number) {
// 收集结果
result.push([...path])
// 此处不返回也可以因为每次递归都会使startIndex + 1当这个数大到nums.length的时候就不会进入递归了。
if (startIndex === nums.length) {
return
}
// 定义每一个树层的set集合
const set: Set<number> = new Set()
for (let i = startIndex; i < nums.length; i++) {
// 去重
if (set.has(nums[i])) {
continue
}
set.add(nums[i])
path.push(nums[i])
backTracking(i + 1)
// 回溯
path.pop()
}
}
backTracking(0)
return result
};
```
### Rust
```Rust
impl Solution {
fn backtracking(result: &mut Vec<Vec<i32>>, path: &mut Vec<i32>, nums: &Vec<i32>, start_index: usize, used: &mut Vec<bool>) {
result.push(path.clone());
let len = nums.len();
// if start_index >= len { return; }
for i in start_index..len {
if i > 0 && nums[i] == nums[i - 1] && !used[i - 1] { continue; }
path.push(nums[i]);
used[i] = true;
Self::backtracking(result, path, nums, i + 1, used);
used[i] = false;
path.pop();
}
}
pub fn subsets_with_dup(mut nums: Vec<i32>) -> Vec<Vec<i32>> {
let mut result: Vec<Vec<i32>> = Vec::new();
let mut path: Vec<i32> = Vec::new();
let mut used = vec![false; nums.len()];
nums.sort();
Self::backtracking(&mut result, &mut path, &nums, 0, &mut used);
result
}
}
```
set 去重版本
```rust
use std::collections::HashSet;
impl Solution {
pub fn subsets_with_dup(mut nums: Vec<i32>) -> Vec<Vec<i32>> {
let mut res = HashSet::new();
let mut path = vec![];
nums.sort();
Self::backtracking(&nums, &mut path, &mut res, 0);
res.into_iter().collect()
}
pub fn backtracking(
nums: &Vec<i32>,
path: &mut Vec<i32>,
res: &mut HashSet<Vec<i32>>,
start_index: usize,
) {
res.insert(path.clone());
for i in start_index..nums.len() {
path.push(nums[i]);
Self::backtracking(nums, path, res, i + 1);
path.pop();
}
}
}
```
### C
```c
int* path;
int pathTop;
int** ans;
int ansTop;
//负责存放二维数组中每个数组的长度
int* lengths;
//快排cmp函数
int cmp(const void* a, const void* b) {
return *((int*)a) - *((int*)b);
}
//复制函数将当前path中的元素复制到ans中。同时记录path长度
void copy() {
int* tempPath = (int*)malloc(sizeof(int) * pathTop);
int i;
for(i = 0; i < pathTop; i++) {
tempPath[i] = path[i];
}
ans = (int**)realloc(ans, sizeof(int*) * (ansTop + 1));
lengths[ansTop] = pathTop;
ans[ansTop++] = tempPath;
}
void backTracking(int* nums, int numsSize, int startIndex, int* used) {
//首先将当前path复制
copy();
//若startIndex大于数组最后一位元素的位置返回
if(startIndex >= numsSize)
return ;
int i;
for(i = startIndex; i < numsSize; i++) {
//对同一树层使用过的元素进行跳过
if(i > 0 && nums[i] == nums[i-1] && used[i-1] == false)
continue;
path[pathTop++] = nums[i];
used[i] = true;
backTracking(nums, numsSize, i + 1, used);
used[i] = false;
pathTop--;
}
}
int** subsetsWithDup(int* nums, int numsSize, int* returnSize, int** returnColumnSizes){
//声明辅助变量
path = (int*)malloc(sizeof(int) * numsSize);
ans = (int**)malloc(0);
lengths = (int*)malloc(sizeof(int) * 1500);
int* used = (int*)malloc(sizeof(int) * numsSize);
pathTop = ansTop = 0;
//排序后查重才能生效
qsort(nums, numsSize, sizeof(int), cmp);
backTracking(nums, numsSize, 0, used);
//设置一维数组和二维数组的返回大小
*returnSize = ansTop;
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
int i;
for(i = 0; i < ansTop; i++) {
(*returnColumnSizes)[i] = lengths[i];
}
return ans;
}
```
### Swift
```swift
func subsetsWithDup(_ nums: [Int]) -> [[Int]] {
let nums = nums.sorted()
var result = [[Int]]()
var path = [Int]()
func backtracking(startIndex: Int) {
// 直接收集结果
result.append(path)
let end = nums.count
guard startIndex < end else { return } // 终止条件
for i in startIndex ..< end {
if i > startIndex, nums[i] == nums[i - 1] { continue } // 跳过重复元素
path.append(nums[i]) // 处理:收集元素
backtracking(startIndex: i + 1) // 元素不重复访问
path.removeLast() // 回溯
}
}
backtracking(startIndex: 0)
return result
}
```
### Scala
不使用used数组:
```scala
object Solution {
import scala.collection.mutable
def subsetsWithDup(nums: Array[Int]): List[List[Int]] = {
var result = mutable.ListBuffer[List[Int]]()
var path = mutable.ListBuffer[Int]()
var num = nums.sorted // 排序
def backtracking(startIndex: Int): Unit = {
result.append(path.toList)
if (startIndex >= num.size){
return
}
for (i <- startIndex until num.size) {
// 同一树层重复的元素不进入回溯
if (!(i > startIndex && num(i) == num(i - 1))) {
path.append(num(i))
backtracking(i + 1)
path.remove(path.size - 1)
}
}
}
backtracking(0)
result.toList
}
}
```
使用Set去重:
```scala
object Solution {
import scala.collection.mutable
def subsetsWithDup(nums: Array[Int]): List[List[Int]] = {
var result = mutable.Set[List[Int]]()
var num = nums.sorted
def backtracking(path: mutable.ListBuffer[Int], startIndex: Int): Unit = {
if (startIndex == num.length) {
result.add(path.toList)
return
}
path.append(num(startIndex))
backtracking(path, startIndex + 1) // 选择
path.remove(path.size - 1)
backtracking(path, startIndex + 1) // 不选择
}
backtracking(mutable.ListBuffer[Int](), 0)
result.toList
}
}
```
<p align="center">
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
</a>