Files
leetcode-master/problems/0977.有序数组的平方.md
youngyangyang04 390b83a53b Update
2020-10-24 16:40:20 +08:00

2.5 KiB
Raw Blame History

思路

暴力排序

最直观的相反,莫过于:每个数平方之后,排个序,美滋滋,代码如下:

class Solution {
public:
    vector<int> sortedSquares(vector<int>& A) {
        for (int i = 0; i < A.size(); i++) {
            A[i] *= A[i];
        }
        sort(A.begin(), A.end()); // 快速排序
        return A;
    }
};

这个时间复杂度是 O(n + nlogn) 可以说是O(nlogn)的时间复杂度,但为了和下面双指针法算法时间复杂度有鲜明对比,我记为 O(n + nlogn)。

双指针法

数组其实是有序的, 只不过负数平方之后可能成为最大数了。

那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。

此时可以考虑双指针法了i指向其实位置j指向终止位置。

定义一个新数组result和A数组一样的大小让k指向result数组终止位置。

如果A[i] * A[i] < A[j] * A[j] 那么result[k--] = A[j] * A[j];

如果A[i] * A[i] >= A[j] * A[j] 那么result[k--] = A[i] * A[i];

如动画所示:

不难写出如下代码:

class Solution {
public:
    vector<int> sortedSquares(vector<int>& A) {
        int k = A.size() - 1;
        vector<int> result(A.size(), 0);
        for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j因为最后要处理两个元素
            if (A[i] * A[i] < A[j] * A[j])  {
                result[k--] = A[j] * A[j];
                j--;
            }
            else {
                result[k--] = A[i] * A[i];
                i++;
            }
        }
        return result;
    }
};

此时的时间复杂度为O(n)相对于暴力排序的解法O(n + nlogn)还是提升不少的。

效率如下:

这里还是说一下大家不必太在意leetcode上执行用时打败多少多少用户这个就是一个玩具非常不准确。

做题的时候自己能分析出来时间复杂度就可以了至于leetcode上执行用时大概看一下就行只要达到最优的时间复杂度就可以了

一样的代码多提交几次可能就击败百分之百了.....

更多算法干货文章持续更新可以微信搜索「代码随想录」第一时间围观关注后回复「Java」「C++」 「python」「简历模板」「数据结构与算法」等等就可以获得我多年整理的学习资料。