9.9 KiB
leetcode上没有纯01背包的问题,都是需要转化为01背包的题目,所以我先把通过纯01背包问题,把01背包原理讲清楚,后序讲解leetcode题目的时候,重点就是如何转化为01背包问题了。
01 背包
有N件物品和一个最多能被重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解。
这样其实就是没有从底向上去思考,而是习惯性的只知道背包了,那么暴力的解法应该是怎么样的呢?
每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。
所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!
目前leetcode上没有发现有纯01背包的题目,leetcode上相关01背包问题都是需要某种条件转化为01背包问题,所以 我举一个纯01背包的例子来给大家讲解。
把01背包理论和代码理解透彻了,我们再刷leetcode上的题目。
下面的讲解中,我举一个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
以下讲解和图示中出现的数字都是以这个例子为例。
- 确定dp数组以及下标的含义
对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
只看这个二维数组的定义,大家一定会有点懵,看下面这个图:
要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。
- dp数组如何初始化
关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。
首先从dp[i][j]的定义触发,如果背包容量j为0的话,无论是选取哪些物品,背包价值总和一定为0。如图:
那么其他下标应该初始化多少呢?
dp[i][j]在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,因为0就是最小的了,不会影响去最大价值的结果。
如果题目给的价值有负数,那么非0下标就要初始化为负无穷了。例如:一个物品的价值是-2,但对应的位置依然初始化为0,那么去最大值的时候,就会取0而不是-2了,所以要初始化为负无穷。
这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。
而本题价值都是正整数,所以初始化为0就可以了。
如图:
很明显,红框的位置就是我们要求的结果
- 确定递推公式
再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
那么可以有两个方向推出来dp[i][j],
- 由dp[i - 1][j]推出,即背包里不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]
- 由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
- 确定遍历顺序
确定递归公式之后,还要确定遍历顺序。
那么问题来了,先遍历 物品还是先遍历背包重量呢?
其实都可以!! 但是先遍历物品更好理解。下面讲到具体原因的时候来在分析原因。
那么首先遍历物品,然后遍历背包重量。
注意 状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 中有两个下标为负数的情况,即:i - 1 和 j - weight[i]。
既然i 是由 i-1 推导出来,那么i为0的时候就一定要初始化,i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
代码如下:
// 倒叙遍历
for (int j = bagWeight; j >= weight[0]; j--) {
dp[0][j] = dp[0][j - weight[0]] + value[0]; // 初始化i为0时候的情况
}
大家应该发现,这个初始化为什么是倒叙的遍历的?正序遍历就不行么?
正序遍历还真就不行,dp[0][j]表示容量为j的背包存放物品0时候的最大价值,物品0的价值就是15,因为题目中说了**每个物品只有一个!**所以dp[0][j]如果不是初始值的话,就应该都是物品0的价值,也就是15。
但如果一旦正序遍历了,那么物品0就会被重复加入多次! 例如代码如下:
// 正序遍历
for (int j = weight[0]; j <= bagWeight; j++) {
dp[0][j] = dp[0][j - weight[0]] + value[0];
}
例如dp[0][1] 是15,到了dp[0][2] = dp[0][2 - 1] + 15; 也就是dp[0][2] = 30 了,那么就是物品0被重复放入了。
所以一定要倒叙遍历,保证物品0只被放入一次!这一点对01背包很重要,后面在讲解滚动数组的时候,还会用到倒叙遍历来保证物品使用一次!
初始化dp数组之后,就可以先遍历物品,在遍历背包,然后使用公式推导了,代码如下:
// 遍历过程
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包重量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
来看一下对应的dp数组的数值,如图:
最终结果就是dp[2][4]。
建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。
做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!
很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。
主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。
遍历过程的代码其实优化的,我是为了把dp数组里数值完整表现出来,精简一下可以是:
// 遍历过程
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包重量
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
完整测试代码:
void 01bagProblem() {
int w[] = {1, 3, 4};
int v[] = {15, 20, 30};
int bagWeight = 4;
vector<int> weight(w, w + sizeof(w)/sizeof(int));
vector<int> value(v, v + sizeof(v)/sizeof(int));
vector<vector<int>> dp(weight.size() + 1, vector<int>(bagWeight + 1, 0));
for (int j = bagWeight; j >= weight[0]; j--) {
dp[0][j] = dp[0][j - weight[0]] + value[0];
}
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j]; // 这个是为了展现dp数组里元素的变化,可以删掉
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
// 把dp数组打印出来,看看对不对
for (int i = 0 ; i < weight.size(); i++) {
for (int j = 0; j <= bagWeight; j++) {
cout << dp[i][j] << " ";
}
cout << endl;
}
// 输出结果
cout << dp[weight.size() - 1][bagWeight] << endl;
}
上面我们讲到 两层for循环的顺序,讲解的过程是用先遍历物品,在遍历背包。
那么先遍历背包,再遍历物品,也是可以的!
例如这样:
// weight数组的大小 就是物品个数
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 1; i < weight.size(); i++) { // 遍历物品
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
为什么也是可以的呢?
要理解递归的本质和递推的方向。
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。
dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正左和正上两个方向),那么先遍历物品,在遍历背包的过程如图所示:
在来看看先遍历背包,再遍历物品呢,如图:
大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!
这一点其实很多题解都没有说清楚,此时大家应该对01背包,两层for控制两个维度,究竟先遍历哪一个有一个深刻理解了。