mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-24 00:57:05 +08:00
358 lines
10 KiB
Markdown
358 lines
10 KiB
Markdown
<p align="center">
|
||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||
<img src="https://code-thinking-1253855093.file.myqcloud.com/pics/20210924105952.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
# 78.子集
|
||
|
||
[力扣题目链接](https://leetcode-cn.com/problems/subsets/)
|
||
|
||
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
|
||
|
||
说明:解集不能包含重复的子集。
|
||
|
||
示例:
|
||
输入: nums = [1,2,3]
|
||
输出:
|
||
[
|
||
[3],
|
||
[1],
|
||
[2],
|
||
[1,2,3],
|
||
[1,3],
|
||
[2,3],
|
||
[1,2],
|
||
[]
|
||
]
|
||
|
||
# 思路
|
||
|
||
求子集问题和[77.组合](https://programmercarl.com/0077.组合.html)和[131.分割回文串](https://programmercarl.com/0131.分割回文串.html)又不一样了。
|
||
|
||
如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,**那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!**
|
||
|
||
其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。
|
||
|
||
**那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!**
|
||
|
||
有同学问了,什么时候for可以从0开始呢?
|
||
|
||
求排列问题的时候,就要从0开始,因为集合是有序的,{1, 2} 和{2, 1}是两个集合,排列问题我们后续的文章就会讲到的。
|
||
|
||
以示例中nums = [1,2,3]为例把求子集抽象为树型结构,如下:
|
||
|
||

|
||
|
||
从图中红线部分,可以看出**遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合**。
|
||
|
||
## 回溯三部曲
|
||
|
||
* 递归函数参数
|
||
|
||
全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)
|
||
|
||
递归函数参数在上面讲到了,需要startIndex。
|
||
|
||
代码如下:
|
||
|
||
```cpp
|
||
vector<vector<int>> result;
|
||
vector<int> path;
|
||
void backtracking(vector<int>& nums, int startIndex) {
|
||
```
|
||
|
||
递归终止条件
|
||
|
||
从图中可以看出:
|
||
|
||

|
||
|
||
剩余集合为空的时候,就是叶子节点。
|
||
|
||
那么什么时候剩余集合为空呢?
|
||
|
||
就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:
|
||
|
||
```cpp
|
||
if (startIndex >= nums.size()) {
|
||
return;
|
||
}
|
||
```
|
||
|
||
**其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了**。
|
||
|
||
* 单层搜索逻辑
|
||
|
||
**求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树**。
|
||
|
||
那么单层递归逻辑代码如下:
|
||
|
||
```
|
||
for (int i = startIndex; i < nums.size(); i++) {
|
||
path.push_back(nums[i]); // 子集收集元素
|
||
backtracking(nums, i + 1); // 注意从i+1开始,元素不重复取
|
||
path.pop_back(); // 回溯
|
||
}
|
||
```
|
||
|
||
## C++代码
|
||
|
||
根据[关于回溯算法,你该了解这些!](https://programmercarl.com/回溯算法理论基础.html)给出的回溯算法模板:
|
||
|
||
```
|
||
void backtracking(参数) {
|
||
if (终止条件) {
|
||
存放结果;
|
||
return;
|
||
}
|
||
|
||
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
|
||
处理节点;
|
||
backtracking(路径,选择列表); // 递归
|
||
回溯,撤销处理结果
|
||
}
|
||
}
|
||
```
|
||
|
||
可以写出如下回溯算法C++代码:
|
||
|
||
```CPP
|
||
class Solution {
|
||
private:
|
||
vector<vector<int>> result;
|
||
vector<int> path;
|
||
void backtracking(vector<int>& nums, int startIndex) {
|
||
result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己
|
||
if (startIndex >= nums.size()) { // 终止条件可以不加
|
||
return;
|
||
}
|
||
for (int i = startIndex; i < nums.size(); i++) {
|
||
path.push_back(nums[i]);
|
||
backtracking(nums, i + 1);
|
||
path.pop_back();
|
||
}
|
||
}
|
||
public:
|
||
vector<vector<int>> subsets(vector<int>& nums) {
|
||
result.clear();
|
||
path.clear();
|
||
backtracking(nums, 0);
|
||
return result;
|
||
}
|
||
};
|
||
|
||
```
|
||
|
||
在注释中,可以发现可以不写终止条件,因为本来我们就要遍历整棵树。
|
||
|
||
有的同学可能担心不写终止条件会不会无限递归?
|
||
|
||
并不会,因为每次递归的下一层就是从i+1开始的。
|
||
|
||
# 总结
|
||
|
||
相信大家经过了
|
||
* 组合问题:
|
||
* [77.组合](https://programmercarl.com/0077.组合.html)
|
||
* [回溯算法:组合问题再剪剪枝](https://programmercarl.com/0077.组合优化.html)
|
||
* [216.组合总和III](https://programmercarl.com/0216.组合总和III.html)
|
||
* [17.电话号码的字母组合](https://programmercarl.com/0017.电话号码的字母组合.html)
|
||
* [39.组合总和](https://programmercarl.com/0039.组合总和.html)
|
||
* [40.组合总和II](https://programmercarl.com/0040.组合总和II.html)
|
||
* 分割问题:
|
||
* [131.分割回文串](https://programmercarl.com/0131.分割回文串.html)
|
||
* [93.复原IP地址](https://programmercarl.com/0093.复原IP地址.html)
|
||
|
||
洗礼之后,发现子集问题还真的有点简单了,其实这就是一道标准的模板题。
|
||
|
||
但是要清楚子集问题和组合问题、分割问题的的区别,**子集是收集树形结构中树的所有节点的结果**。
|
||
|
||
**而组合问题、分割问题是收集树形结构中叶子节点的结果**。
|
||
|
||
# 其他语言版本
|
||
|
||
|
||
## Java
|
||
```java
|
||
class Solution {
|
||
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
|
||
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
|
||
public List<List<Integer>> subsets(int[] nums) {
|
||
if (nums.length == 0){
|
||
result.add(new ArrayList<>());
|
||
return result;
|
||
}
|
||
subsetsHelper(nums, 0);
|
||
return result;
|
||
}
|
||
|
||
private void subsetsHelper(int[] nums, int startIndex){
|
||
result.add(new ArrayList<>(path));//「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」。
|
||
if (startIndex >= nums.length){ //终止条件可不加
|
||
return;
|
||
}
|
||
for (int i = startIndex; i < nums.length; i++){
|
||
path.add(nums[i]);
|
||
subsetsHelper(nums, i + 1);
|
||
path.removeLast();
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
## Python
|
||
```python3
|
||
class Solution:
|
||
def __init__(self):
|
||
self.path: List[int] = []
|
||
self.paths: List[List[int]] = []
|
||
|
||
def subsets(self, nums: List[int]) -> List[List[int]]:
|
||
self.paths.clear()
|
||
self.path.clear()
|
||
self.backtracking(nums, 0)
|
||
return self.paths
|
||
|
||
def backtracking(self, nums: List[int], start_index: int) -> None:
|
||
# 收集子集,要先于终止判断
|
||
self.paths.append(self.path[:])
|
||
# Base Case
|
||
if start_index == len(nums):
|
||
return
|
||
|
||
# 单层递归逻辑
|
||
for i in range(start_index, len(nums)):
|
||
self.path.append(nums[i])
|
||
self.backtracking(nums, i+1)
|
||
self.path.pop() # 回溯
|
||
```
|
||
|
||
## Go
|
||
```Go
|
||
var res [][]int
|
||
func subset(nums []int) [][]int {
|
||
res = make([][]int, 0)
|
||
sort.Ints(nums)
|
||
Dfs([]int{}, nums, 0)
|
||
return res
|
||
}
|
||
func Dfs(temp, nums []int, start int){
|
||
tmp := make([]int, len(temp))
|
||
copy(tmp, temp)
|
||
res = append(res, tmp)
|
||
for i := start; i < len(nums); i++{
|
||
//if i>start&&nums[i]==nums[i-1]{
|
||
// continue
|
||
//}
|
||
temp = append(temp, nums[i])
|
||
Dfs(temp, nums, i+1)
|
||
temp = temp[:len(temp)-1]
|
||
}
|
||
}
|
||
```
|
||
|
||
## Javascript
|
||
|
||
```Javascript
|
||
var subsets = function(nums) {
|
||
let result = []
|
||
let path = []
|
||
function backtracking(startIndex) {
|
||
result.push(path.slice())
|
||
for(let i = startIndex; i < nums.length; i++) {
|
||
path.push(nums[i])
|
||
backtracking(i + 1)
|
||
path.pop()
|
||
}
|
||
}
|
||
backtracking(0)
|
||
return result
|
||
};
|
||
```
|
||
|
||
## C
|
||
```c
|
||
int* path;
|
||
int pathTop;
|
||
int** ans;
|
||
int ansTop;
|
||
//记录二维数组中每个一维数组的长度
|
||
int* length;
|
||
//将当前path数组复制到ans中
|
||
void copy() {
|
||
int* tempPath = (int*)malloc(sizeof(int) * pathTop);
|
||
int i;
|
||
for(i = 0; i < pathTop; i++) {
|
||
tempPath[i] = path[i];
|
||
}
|
||
ans = (int**)realloc(ans, sizeof(int*) * (ansTop+1));
|
||
length[ansTop] = pathTop;
|
||
ans[ansTop++] = tempPath;
|
||
}
|
||
|
||
void backTracking(int* nums, int numsSize, int startIndex) {
|
||
//收集子集,要放在终止添加的上面,否则会漏掉自己
|
||
copy();
|
||
//若startIndex大于数组大小,返回
|
||
if(startIndex >= numsSize) {
|
||
return;
|
||
}
|
||
int j;
|
||
for(j = startIndex; j < numsSize; j++) {
|
||
//将当前下标数字放入path中
|
||
path[pathTop++] = nums[j];
|
||
backTracking(nums, numsSize, j+1);
|
||
//回溯
|
||
pathTop--;
|
||
}
|
||
}
|
||
|
||
int** subsets(int* nums, int numsSize, int* returnSize, int** returnColumnSizes){
|
||
//初始化辅助变量
|
||
path = (int*)malloc(sizeof(int) * numsSize);
|
||
ans = (int**)malloc(0);
|
||
length = (int*)malloc(sizeof(int) * 1500);
|
||
ansTop = pathTop = 0;
|
||
//进入回溯
|
||
backTracking(nums, numsSize, 0);
|
||
//设置二维数组中元素个数
|
||
*returnSize = ansTop;
|
||
//设置二维数组中每个一维数组的长度
|
||
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
|
||
int i;
|
||
for(i = 0; i < ansTop; i++) {
|
||
(*returnColumnSizes)[i] = length[i];
|
||
}
|
||
return ans;
|
||
}
|
||
```
|
||
|
||
## Swift
|
||
|
||
```swift
|
||
func subsets(_ nums: [Int]) -> [[Int]] {
|
||
var result = [[Int]]()
|
||
var path = [Int]()
|
||
func backtracking(startIndex: Int) {
|
||
// 直接收集结果
|
||
result.append(path)
|
||
|
||
let end = nums.count
|
||
guard startIndex < end else { return } // 终止条件
|
||
for i in startIndex ..< end {
|
||
path.append(nums[i]) // 处理:收集元素
|
||
backtracking(startIndex: i + 1) // 元素不重复访问
|
||
path.removeLast() // 回溯
|
||
}
|
||
}
|
||
backtracking(startIndex: 0)
|
||
return result
|
||
}
|
||
```
|
||
|
||
|
||
-----------------------
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>
|