mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-24 00:57:05 +08:00
434 lines
12 KiB
Markdown
434 lines
12 KiB
Markdown
<p align="center">
|
||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||
<img src="https://code-thinking-1253855093.file.myqcloud.com/pics/20210924105952.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
# 46.全排列
|
||
|
||
[力扣题目链接](https://leetcode-cn.com/problems/permutations/)
|
||
|
||
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
|
||
|
||
示例:
|
||
* 输入: [1,2,3]
|
||
* 输出:
|
||
[
|
||
[1,2,3],
|
||
[1,3,2],
|
||
[2,1,3],
|
||
[2,3,1],
|
||
[3,1,2],
|
||
[3,2,1]
|
||
]
|
||
|
||
## 思路
|
||
|
||
**如果对回溯算法基础还不了解的话,我还特意录制了一期视频:[带你学透回溯算法(理论篇)](https://www.bilibili.com/video/BV1cy4y167mM/)** 可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。
|
||
|
||
|
||
此时我们已经学习了[77.组合问题](https://programmercarl.com/0077.组合.html)、 [131.分割回文串](https://programmercarl.com/0131.分割回文串.html)和[78.子集问题](https://programmercarl.com/0078.子集.html),接下来看一看排列问题。
|
||
|
||
相信这个排列问题就算是让你用for循环暴力把结果搜索出来,这个暴力也不是很好写。
|
||
|
||
所以正如我们在[关于回溯算法,你该了解这些!](https://programmercarl.com/回溯算法理论基础.html)所讲的为什么回溯法是暴力搜索,效率这么低,还要用它?
|
||
|
||
**因为一些问题能暴力搜出来就已经很不错了!**
|
||
|
||
我以[1,2,3]为例,抽象成树形结构如下:
|
||
|
||

|
||
|
||
### 回溯三部曲
|
||
|
||
* 递归函数参数
|
||
|
||
**首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方**。
|
||
|
||
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
|
||
|
||
但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:
|
||
|
||

|
||
|
||
代码如下:
|
||
|
||
```cpp
|
||
vector<vector<int>> result;
|
||
vector<int> path;
|
||
void backtracking (vector<int>& nums, vector<bool>& used)
|
||
```
|
||
|
||
* 递归终止条件
|
||
|
||

|
||
|
||
可以看出叶子节点,就是收割结果的地方。
|
||
|
||
那么什么时候,算是到达叶子节点呢?
|
||
|
||
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。
|
||
|
||
代码如下:
|
||
|
||
```cpp
|
||
// 此时说明找到了一组
|
||
if (path.size() == nums.size()) {
|
||
result.push_back(path);
|
||
return;
|
||
}
|
||
```
|
||
|
||
* 单层搜索的逻辑
|
||
|
||
这里和[77.组合问题](https://programmercarl.com/0077.组合.html)、[131.切割问题](https://programmercarl.com/0131.分割回文串.html)和[78.子集问题](https://programmercarl.com/0078.子集.html)最大的不同就是for循环里不用startIndex了。
|
||
|
||
因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。
|
||
|
||
**而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次**。
|
||
|
||
代码如下:
|
||
|
||
```cpp
|
||
for (int i = 0; i < nums.size(); i++) {
|
||
if (used[i] == true) continue; // path里已经收录的元素,直接跳过
|
||
used[i] = true;
|
||
path.push_back(nums[i]);
|
||
backtracking(nums, used);
|
||
path.pop_back();
|
||
used[i] = false;
|
||
}
|
||
```
|
||
|
||
整体C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
vector<vector<int>> result;
|
||
vector<int> path;
|
||
void backtracking (vector<int>& nums, vector<bool>& used) {
|
||
// 此时说明找到了一组
|
||
if (path.size() == nums.size()) {
|
||
result.push_back(path);
|
||
return;
|
||
}
|
||
for (int i = 0; i < nums.size(); i++) {
|
||
if (used[i] == true) continue; // path里已经收录的元素,直接跳过
|
||
used[i] = true;
|
||
path.push_back(nums[i]);
|
||
backtracking(nums, used);
|
||
path.pop_back();
|
||
used[i] = false;
|
||
}
|
||
}
|
||
vector<vector<int>> permute(vector<int>& nums) {
|
||
result.clear();
|
||
path.clear();
|
||
vector<bool> used(nums.size(), false);
|
||
backtracking(nums, used);
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
## 总结
|
||
|
||
大家此时可以感受出排列问题的不同:
|
||
|
||
* 每层都是从0开始搜索而不是startIndex
|
||
* 需要used数组记录path里都放了哪些元素了
|
||
|
||
排列问题是回溯算法解决的经典题目,大家可以好好体会体会。
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
### Java
|
||
|
||
```java
|
||
class Solution {
|
||
|
||
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
|
||
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
|
||
boolean[] used;
|
||
public List<List<Integer>> permute(int[] nums) {
|
||
if (nums.length == 0){
|
||
return result;
|
||
}
|
||
used = new boolean[nums.length];
|
||
permuteHelper(nums);
|
||
return result;
|
||
}
|
||
|
||
private void permuteHelper(int[] nums){
|
||
if (path.size() == nums.length){
|
||
result.add(new ArrayList<>(path));
|
||
return;
|
||
}
|
||
for (int i = 0; i < nums.length; i++){
|
||
if (used[i]){
|
||
continue;
|
||
}
|
||
used[i] = true;
|
||
path.add(nums[i]);
|
||
permuteHelper(nums);
|
||
path.removeLast();
|
||
used[i] = false;
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
```java
|
||
// 解法2:通过判断path中是否存在数字,排除已经选择的数字
|
||
class Solution {
|
||
List<List<Integer>> result = new ArrayList<>();
|
||
LinkedList<Integer> path = new LinkedList<>();
|
||
public List<List<Integer>> permute(int[] nums) {
|
||
if (nums.length == 0) return result;
|
||
backtrack(nums, path);
|
||
return result;
|
||
}
|
||
public void backtrack(int[] nums, LinkedList<Integer> path) {
|
||
if (path.size() == nums.length) {
|
||
result.add(new ArrayList<>(path));
|
||
}
|
||
for (int i =0; i < nums.length; i++) {
|
||
// 如果path中已有,则跳过
|
||
if (path.contains(nums[i])) {
|
||
continue;
|
||
}
|
||
path.add(nums[i]);
|
||
backtrack(nums, path);
|
||
path.removeLast();
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
### Python
|
||
**回溯**
|
||
```python
|
||
class Solution:
|
||
def __init__(self):
|
||
self.path = []
|
||
self.paths = []
|
||
|
||
def permute(self, nums: List[int]) -> List[List[int]]:
|
||
'''
|
||
因为本题排列是有序的,这意味着同一层的元素可以重复使用,但同一树枝上不能重复使用(usage_list)
|
||
所以处理排列问题每层都需要从头搜索,故不再使用start_index
|
||
'''
|
||
usage_list = [False] * len(nums)
|
||
self.backtracking(nums, usage_list)
|
||
return self.paths
|
||
|
||
def backtracking(self, nums: List[int], usage_list: List[bool]) -> None:
|
||
# Base Case本题求叶子节点
|
||
if len(self.path) == len(nums):
|
||
self.paths.append(self.path[:])
|
||
return
|
||
|
||
# 单层递归逻辑
|
||
for i in range(0, len(nums)): # 从头开始搜索
|
||
# 若遇到self.path里已收录的元素,跳过
|
||
if usage_list[i] == True:
|
||
continue
|
||
usage_list[i] = True
|
||
self.path.append(nums[i])
|
||
self.backtracking(nums, usage_list) # 纵向传递使用信息,去重
|
||
self.path.pop()
|
||
usage_list[i] = False
|
||
```
|
||
**回溯+丢掉usage_list**
|
||
```python3
|
||
class Solution:
|
||
def __init__(self):
|
||
self.path = []
|
||
self.paths = []
|
||
|
||
def permute(self, nums: List[int]) -> List[List[int]]:
|
||
'''
|
||
因为本题排列是有序的,这意味着同一层的元素可以重复使用,但同一树枝上不能重复使用
|
||
所以处理排列问题每层都需要从头搜索,故不再使用start_index
|
||
'''
|
||
self.backtracking(nums)
|
||
return self.paths
|
||
|
||
def backtracking(self, nums: List[int]) -> None:
|
||
# Base Case本题求叶子节点
|
||
if len(self.path) == len(nums):
|
||
self.paths.append(self.path[:])
|
||
return
|
||
|
||
# 单层递归逻辑
|
||
for i in range(0, len(nums)): # 从头开始搜索
|
||
# 若遇到self.path里已收录的元素,跳过
|
||
if nums[i] in self.path:
|
||
continue
|
||
self.path.append(nums[i])
|
||
self.backtracking(nums)
|
||
self.path.pop()
|
||
```
|
||
|
||
### Go
|
||
```Go
|
||
var res [][]int
|
||
func permute(nums []int) [][]int {
|
||
res = [][]int{}
|
||
backTrack(nums,len(nums),[]int{})
|
||
return res
|
||
}
|
||
func backTrack(nums []int,numsLen int,path []int) {
|
||
if len(nums)==0{
|
||
p:=make([]int,len(path))
|
||
copy(p,path)
|
||
res = append(res,p)
|
||
}
|
||
for i:=0;i<numsLen;i++{
|
||
cur:=nums[i]
|
||
path = append(path,cur)
|
||
nums = append(nums[:i],nums[i+1:]...)//直接使用切片
|
||
backTrack(nums,len(nums),path)
|
||
nums = append(nums[:i],append([]int{cur},nums[i:]...)...)//回溯的时候切片也要复原,元素位置不能变
|
||
path = path[:len(path)-1]
|
||
|
||
}
|
||
}
|
||
|
||
```
|
||
|
||
### Javascript
|
||
|
||
```js
|
||
|
||
/**
|
||
* @param {number[]} nums
|
||
* @return {number[][]}
|
||
*/
|
||
var permute = function(nums) {
|
||
const res = [], path = [];
|
||
backtracking(nums, nums.length, []);
|
||
return res;
|
||
|
||
function backtracking(n, k, used) {
|
||
if(path.length === k) {
|
||
res.push(Array.from(path));
|
||
return;
|
||
}
|
||
for (let i = 0; i < k; i++ ) {
|
||
if(used[i]) continue;
|
||
path.push(n[i]);
|
||
used[i] = true; // 同支
|
||
backtracking(n, k, used);
|
||
path.pop();
|
||
used[i] = false;
|
||
}
|
||
}
|
||
};
|
||
|
||
```
|
||
|
||
### C
|
||
|
||
```c
|
||
int* path;
|
||
int pathTop;
|
||
int** ans;
|
||
int ansTop;
|
||
|
||
//将used中元素都设置为0
|
||
void initialize(int* used, int usedLength) {
|
||
int i;
|
||
for(i = 0; i < usedLength; i++) {
|
||
used[i] = 0;
|
||
}
|
||
}
|
||
|
||
//将path中元素拷贝到ans中
|
||
void copy() {
|
||
int* tempPath = (int*)malloc(sizeof(int) * pathTop);
|
||
int i;
|
||
for(i = 0; i < pathTop; i++) {
|
||
tempPath[i] = path[i];
|
||
}
|
||
ans[ansTop++] = tempPath;
|
||
}
|
||
|
||
void backTracking(int* nums, int numsSize, int* used) {
|
||
//若path中元素个数等于nums元素个数,将nums放入ans中
|
||
if(pathTop == numsSize) {
|
||
copy();
|
||
return;
|
||
}
|
||
int i;
|
||
for(i = 0; i < numsSize; i++) {
|
||
//若当前下标中元素已使用过,则跳过当前元素
|
||
if(used[i])
|
||
continue;
|
||
used[i] = 1;
|
||
path[pathTop++] = nums[i];
|
||
backTracking(nums, numsSize, used);
|
||
//回溯
|
||
pathTop--;
|
||
used[i] = 0;
|
||
}
|
||
}
|
||
|
||
int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes){
|
||
//初始化辅助变量
|
||
path = (int*)malloc(sizeof(int) * numsSize);
|
||
ans = (int**)malloc(sizeof(int*) * 1000);
|
||
int* used = (int*)malloc(sizeof(int) * numsSize);
|
||
//将used数组中元素都置0
|
||
initialize(used, numsSize);
|
||
ansTop = pathTop = 0;
|
||
|
||
backTracking(nums, numsSize, used);
|
||
|
||
//设置path和ans数组的长度
|
||
*returnSize = ansTop;
|
||
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
|
||
int i;
|
||
for(i = 0; i < ansTop; i++) {
|
||
(*returnColumnSizes)[i] = numsSize;
|
||
}
|
||
return ans;
|
||
}
|
||
```
|
||
|
||
### Swift
|
||
|
||
```swift
|
||
func permute(_ nums: [Int]) -> [[Int]] {
|
||
var result = [[Int]]()
|
||
var path = [Int]()
|
||
var used = [Bool](repeating: false, count: nums.count) // 记录path中已包含的元素
|
||
func backtracking() {
|
||
// 结束条件,收集结果
|
||
if path.count == nums.count {
|
||
result.append(path)
|
||
return
|
||
}
|
||
|
||
for i in 0 ..< nums.count {
|
||
if used[i] { continue } // 排除已包含的元素
|
||
used[i] = true
|
||
path.append(nums[i])
|
||
backtracking()
|
||
// 回溯
|
||
path.removeLast()
|
||
used[i] = false
|
||
}
|
||
}
|
||
backtracking()
|
||
return result
|
||
}
|
||
```
|
||
|
||
|
||
-----------------------
|
||
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>
|