Files
leetcode-master/problems/0046.全排列.md
youngyangyang04 2793db9231 更新链接
2021-12-20 22:55:18 +08:00

434 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
<img src="https://code-thinking-1253855093.file.myqcloud.com/pics/20210924105952.png" width="1000"/>
</a>
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
# 46.全排列
[力扣题目链接](https://leetcode-cn.com/problems/permutations/)
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
* 输入: [1,2,3]
* 输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
## 思路
**如果对回溯算法基础还不了解的话,我还特意录制了一期视频:[带你学透回溯算法(理论篇)](https://www.bilibili.com/video/BV1cy4y167mM/)** 可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。
此时我们已经学习了[77.组合问题](https://programmercarl.com/0077.组合.html)、 [131.分割回文串](https://programmercarl.com/0131.分割回文串.html)和[78.子集问题](https://programmercarl.com/0078.子集.html),接下来看一看排列问题。
相信这个排列问题就算是让你用for循环暴力把结果搜索出来这个暴力也不是很好写。
所以正如我们在[关于回溯算法,你该了解这些!](https://programmercarl.com/回溯算法理论基础.html)所讲的为什么回溯法是暴力搜索,效率这么低,还要用它?
**因为一些问题能暴力搜出来就已经很不错了!**
我以[1,2,3]为例,抽象成树形结构如下:
![46.全排列](https://code-thinking-1253855093.file.myqcloud.com/pics/20211027181706.png)
### 回溯三部曲
* 递归函数参数
**首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方**
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组标记已经选择的元素如图橘黄色部分所示:
![46.全排列](https://code-thinking-1253855093.file.myqcloud.com/pics/20211027181706.png)
代码如下:
```cpp
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
```
* 递归终止条件
![46.全排列](https://img-blog.csdnimg.cn/20201209174225145.png)
可以看出叶子节点,就是收割结果的地方。
那么什么时候,算是到达叶子节点呢?
当收集元素的数组path的大小达到和nums数组一样大的时候说明找到了一个全排列也表示到达了叶子节点。
代码如下:
```cpp
// 此时说明找到了一组
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
```
* 单层搜索的逻辑
这里和[77.组合问题](https://programmercarl.com/0077.组合.html)、[131.切割问题](https://programmercarl.com/0131.分割回文串.html)和[78.子集问题](https://programmercarl.com/0078.子集.html)最大的不同就是for循环里不用startIndex了。
因为排列问题每次都要从头开始搜索例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。
**而used数组其实就是记录此时path里都有哪些元素使用了一个排列里一个元素只能使用一次**
代码如下:
```cpp
for (int i = 0; i < nums.size(); i++) {
if (used[i] == true) continue; // path里已经收录的元素直接跳过
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
```
整体C++代码如下:
```CPP
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used) {
// 此时说明找到了一组
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
for (int i = 0; i < nums.size(); i++) {
if (used[i] == true) continue; // path里已经收录的元素直接跳过
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}
}
vector<vector<int>> permute(vector<int>& nums) {
result.clear();
path.clear();
vector<bool> used(nums.size(), false);
backtracking(nums, used);
return result;
}
};
```
## 总结
大家此时可以感受出排列问题的不同:
* 每层都是从0开始搜索而不是startIndex
* 需要used数组记录path里都放了哪些元素了
排列问题是回溯算法解决的经典题目,大家可以好好体会体会。
## 其他语言版本
### Java
```java
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used;
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0){
return result;
}
used = new boolean[nums.length];
permuteHelper(nums);
return result;
}
private void permuteHelper(int[] nums){
if (path.size() == nums.length){
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++){
if (used[i]){
continue;
}
used[i] = true;
path.add(nums[i]);
permuteHelper(nums);
path.removeLast();
used[i] = false;
}
}
}
```
```java
// 解法2通过判断path中是否存在数字排除已经选择的数字
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0) return result;
backtrack(nums, path);
return result;
}
public void backtrack(int[] nums, LinkedList<Integer> path) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
}
for (int i =0; i < nums.length; i++) {
// 如果path中已有则跳过
if (path.contains(nums[i])) {
continue;
}
path.add(nums[i]);
backtrack(nums, path);
path.removeLast();
}
}
}
```
### Python
**回溯**
```python
class Solution:
def __init__(self):
self.path = []
self.paths = []
def permute(self, nums: List[int]) -> List[List[int]]:
'''
因为本题排列是有序的,这意味着同一层的元素可以重复使用,但同一树枝上不能重复使用(usage_list)
所以处理排列问题每层都需要从头搜索故不再使用start_index
'''
usage_list = [False] * len(nums)
self.backtracking(nums, usage_list)
return self.paths
def backtracking(self, nums: List[int], usage_list: List[bool]) -> None:
# Base Case本题求叶子节点
if len(self.path) == len(nums):
self.paths.append(self.path[:])
return
# 单层递归逻辑
for i in range(0, len(nums)): # 从头开始搜索
# 若遇到self.path里已收录的元素跳过
if usage_list[i] == True:
continue
usage_list[i] = True
self.path.append(nums[i])
self.backtracking(nums, usage_list) # 纵向传递使用信息,去重
self.path.pop()
usage_list[i] = False
```
**回溯+丢掉usage_list**
```python3
class Solution:
def __init__(self):
self.path = []
self.paths = []
def permute(self, nums: List[int]) -> List[List[int]]:
'''
因为本题排列是有序的,这意味着同一层的元素可以重复使用,但同一树枝上不能重复使用
所以处理排列问题每层都需要从头搜索故不再使用start_index
'''
self.backtracking(nums)
return self.paths
def backtracking(self, nums: List[int]) -> None:
# Base Case本题求叶子节点
if len(self.path) == len(nums):
self.paths.append(self.path[:])
return
# 单层递归逻辑
for i in range(0, len(nums)): # 从头开始搜索
# 若遇到self.path里已收录的元素跳过
if nums[i] in self.path:
continue
self.path.append(nums[i])
self.backtracking(nums)
self.path.pop()
```
### Go
```Go
var res [][]int
func permute(nums []int) [][]int {
res = [][]int{}
backTrack(nums,len(nums),[]int{})
return res
}
func backTrack(nums []int,numsLen int,path []int) {
if len(nums)==0{
p:=make([]int,len(path))
copy(p,path)
res = append(res,p)
}
for i:=0;i<numsLen;i++{
cur:=nums[i]
path = append(path,cur)
nums = append(nums[:i],nums[i+1:]...)//直接使用切片
backTrack(nums,len(nums),path)
nums = append(nums[:i],append([]int{cur},nums[i:]...)...)//回溯的时候切片也要复原,元素位置不能变
path = path[:len(path)-1]
}
}
```
### Javascript
```js
/**
* @param {number[]} nums
* @return {number[][]}
*/
var permute = function(nums) {
const res = [], path = [];
backtracking(nums, nums.length, []);
return res;
function backtracking(n, k, used) {
if(path.length === k) {
res.push(Array.from(path));
return;
}
for (let i = 0; i < k; i++ ) {
if(used[i]) continue;
path.push(n[i]);
used[i] = true; // 同支
backtracking(n, k, used);
path.pop();
used[i] = false;
}
}
};
```
### C
```c
int* path;
int pathTop;
int** ans;
int ansTop;
//将used中元素都设置为0
void initialize(int* used, int usedLength) {
int i;
for(i = 0; i < usedLength; i++) {
used[i] = 0;
}
}
//将path中元素拷贝到ans中
void copy() {
int* tempPath = (int*)malloc(sizeof(int) * pathTop);
int i;
for(i = 0; i < pathTop; i++) {
tempPath[i] = path[i];
}
ans[ansTop++] = tempPath;
}
void backTracking(int* nums, int numsSize, int* used) {
//若path中元素个数等于nums元素个数将nums放入ans中
if(pathTop == numsSize) {
copy();
return;
}
int i;
for(i = 0; i < numsSize; i++) {
//若当前下标中元素已使用过,则跳过当前元素
if(used[i])
continue;
used[i] = 1;
path[pathTop++] = nums[i];
backTracking(nums, numsSize, used);
//回溯
pathTop--;
used[i] = 0;
}
}
int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes){
//初始化辅助变量
path = (int*)malloc(sizeof(int) * numsSize);
ans = (int**)malloc(sizeof(int*) * 1000);
int* used = (int*)malloc(sizeof(int) * numsSize);
//将used数组中元素都置0
initialize(used, numsSize);
ansTop = pathTop = 0;
backTracking(nums, numsSize, used);
//设置path和ans数组的长度
*returnSize = ansTop;
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
int i;
for(i = 0; i < ansTop; i++) {
(*returnColumnSizes)[i] = numsSize;
}
return ans;
}
```
### Swift
```swift
func permute(_ nums: [Int]) -> [[Int]] {
var result = [[Int]]()
var path = [Int]()
var used = [Bool](repeating: false, count: nums.count) // 记录path中已包含的元素
func backtracking() {
// 结束条件,收集结果
if path.count == nums.count {
result.append(path)
return
}
for i in 0 ..< nums.count {
if used[i] { continue } // 排除已包含的元素
used[i] = true
path.append(nums[i])
backtracking()
// 回溯
path.removeLast()
used[i] = false
}
}
backtracking()
return result
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>