mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-24 00:57:05 +08:00
358 lines
12 KiB
Markdown
358 lines
12 KiB
Markdown
<p align="center">
|
||
<a href="https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ"><img src="https://img.shields.io/badge/知识星球-代码随想录-blue" alt=""></a>
|
||
<a href="https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw"><img src="https://img.shields.io/badge/刷题-微信群-green" alt=""></a>
|
||
<a href="https://img-blog.csdnimg.cn/20201210231711160.png"><img src="https://img.shields.io/badge/公众号-代码随想录-brightgreen" alt=""></a>
|
||
<a href="https://space.bilibili.com/525438321"><img src="https://img.shields.io/badge/B站-代码随想录-orange" alt=""></a>
|
||
</p>
|
||
<p align="center"><strong>欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
|
||
|
||
# 第77题. 组合
|
||
|
||
题目链接:https://leetcode-cn.com/problems/combinations/
|
||
|
||
给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。
|
||
|
||
示例:
|
||
输入: n = 4, k = 2
|
||
输出:
|
||
[
|
||
[2,4],
|
||
[3,4],
|
||
[2,3],
|
||
[1,2],
|
||
[1,3],
|
||
[1,4],
|
||
]
|
||
|
||
也可以直接看我的B站视频:[带你学透回溯算法-组合问题(对应力扣题目:77.组合)](https://www.bilibili.com/video/BV1ti4y1L7cv#reply3733925949)
|
||
|
||
## 思路
|
||
|
||
|
||
本题这是回溯法的经典题目。
|
||
|
||
直接的解法当然是使用for循环,例如示例中k为2,很容易想到 用两个for循环,这样就可以输出 和示例中一样的结果。
|
||
|
||
代码如下:
|
||
```
|
||
int n = 4;
|
||
for (int i = 1; i <= n; i++) {
|
||
for (int j = i + 1; j <= n; j++) {
|
||
cout << i << " " << j << endl;
|
||
}
|
||
}
|
||
```
|
||
|
||
输入:n = 100, k = 3
|
||
那么就三层for循环,代码如下:
|
||
|
||
```
|
||
int n = 100;
|
||
for (int i = 1; i <= n; i++) {
|
||
for (int j = i + 1; j <= n; j++) {
|
||
for (int u = j + 1; u <= n; n++) {
|
||
cout << i << " " << j << " " << u << endl;
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
**如果n为100,k为50呢,那就50层for循环,是不是开始窒息**。
|
||
|
||
**此时就会发现虽然想暴力搜索,但是用for循环嵌套连暴力都写不出来!**
|
||
|
||
咋整?
|
||
|
||
回溯搜索法来了,虽然回溯法也是暴力,但至少能写出来,不像for循环嵌套k层让人绝望。
|
||
|
||
那么回溯法怎么暴力搜呢?
|
||
|
||
上面我们说了**要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题**。
|
||
|
||
递归来做层叠嵌套(可以理解是开k层for循环),**每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了**。
|
||
|
||
此时递归的层数大家应该知道了,例如:n为100,k为50的情况下,就是递归50层。
|
||
|
||
一些同学本来对递归就懵,回溯法中递归还要嵌套for循环,可能就直接晕倒了!
|
||
|
||
如果脑洞模拟回溯搜索的过程,绝对可以让人窒息,所以需要抽象图形结构来进一步理解。
|
||
|
||
**我们在[关于回溯算法,你该了解这些!](https://mp.weixin.qq.com/s/gjSgJbNbd1eAA5WkA-HeWw)中说道回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了**。
|
||
|
||
那么我把组合问题抽象为如下树形结构:
|
||
|
||

|
||
|
||
可以看出这个棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不在重复取。
|
||
|
||
第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。
|
||
|
||
**每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围**。
|
||
|
||
**图中可以发现n相当于树的宽度,k相当于树的深度**。
|
||
|
||
那么如何在这个树上遍历,然后收集到我们要的结果集呢?
|
||
|
||
**图中每次搜索到了叶子节点,我们就找到了一个结果**。
|
||
|
||
相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。
|
||
|
||
在[关于回溯算法,你该了解这些!](https://mp.weixin.qq.com/s/gjSgJbNbd1eAA5WkA-HeWw)中我们提到了回溯法三部曲,那么我们按照回溯法三部曲开始正式讲解代码了。
|
||
|
||
|
||
## 回溯法三部曲
|
||
|
||
* 递归函数的返回值以及参数
|
||
|
||
在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。
|
||
|
||
代码如下:
|
||
|
||
```
|
||
vector<vector<int>> result; // 存放符合条件结果的集合
|
||
vector<int> path; // 用来存放符合条件结果
|
||
```
|
||
|
||
其实不定义这两个全局遍历也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以我定义全局变量了。
|
||
|
||
函数里一定有两个参数,既然是集合n里面取k的数,那么n和k是两个int型的参数。
|
||
|
||
然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
|
||
|
||
为什么要有这个startIndex呢?
|
||
|
||
**每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex**。
|
||
|
||
从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。
|
||
|
||

|
||
|
||
所以需要startIndex来记录下一层递归,搜索的起始位置。
|
||
|
||
那么整体代码如下:
|
||
|
||
```
|
||
vector<vector<int>> result; // 存放符合条件结果的集合
|
||
vector<int> path; // 用来存放符合条件单一结果
|
||
void backtracking(int n, int k, int startIndex)
|
||
```
|
||
|
||
* 回溯函数终止条件
|
||
|
||
什么时候到达所谓的叶子节点了呢?
|
||
|
||
path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。
|
||
|
||
如图红色部分:
|
||
|
||

|
||
|
||
此时用result二维数组,把path保存起来,并终止本层递归。
|
||
|
||
所以终止条件代码如下:
|
||
|
||
```
|
||
if (path.size() == k) {
|
||
result.push_back(path);
|
||
return;
|
||
}
|
||
```
|
||
|
||
* 单层搜索的过程
|
||
|
||
回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。
|
||
|
||

|
||
|
||
如此我们才遍历完图中的这棵树。
|
||
|
||
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
|
||
|
||
代码如下:
|
||
|
||
```C++
|
||
for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
|
||
path.push_back(i); // 处理节点
|
||
backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
|
||
path.pop_back(); // 回溯,撤销处理的节点
|
||
}
|
||
```
|
||
|
||
可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。
|
||
|
||
backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。
|
||
|
||
关键地方都讲完了,组合问题C++完整代码如下:
|
||
|
||
|
||
```C++
|
||
class Solution {
|
||
private:
|
||
vector<vector<int>> result; // 存放符合条件结果的集合
|
||
vector<int> path; // 用来存放符合条件结果
|
||
void backtracking(int n, int k, int startIndex) {
|
||
if (path.size() == k) {
|
||
result.push_back(path);
|
||
return;
|
||
}
|
||
for (int i = startIndex; i <= n; i++) {
|
||
path.push_back(i); // 处理节点
|
||
backtracking(n, k, i + 1); // 递归
|
||
path.pop_back(); // 回溯,撤销处理的节点
|
||
}
|
||
}
|
||
public:
|
||
vector<vector<int>> combine(int n, int k) {
|
||
result.clear(); // 可以不写
|
||
path.clear(); // 可以不写
|
||
backtracking(n, k, 1);
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
还记得我们在[关于回溯算法,你该了解这些!](https://mp.weixin.qq.com/s/gjSgJbNbd1eAA5WkA-HeWw)中给出的回溯法模板么?
|
||
|
||
如下:
|
||
```
|
||
void backtracking(参数) {
|
||
if (终止条件) {
|
||
存放结果;
|
||
return;
|
||
}
|
||
|
||
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
|
||
处理节点;
|
||
backtracking(路径,选择列表); // 递归
|
||
回溯,撤销处理结果
|
||
}
|
||
}
|
||
```
|
||
|
||
**对比一下本题的代码,是不是发现有点像!** 所以有了这个模板,就有解题的大体方向,不至于毫无头绪。
|
||
|
||
# 总结
|
||
|
||
组合问题是回溯法解决的经典问题,我们开始的时候给大家列举一个很形象的例子,就是n为100,k为50的话,直接想法就需要50层for循环。
|
||
|
||
从而引出了回溯法就是解决这种k层for循环嵌套的问题。
|
||
|
||
然后进一步把回溯法的搜索过程抽象为树形结构,可以直观的看出搜索的过程。
|
||
|
||
接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。
|
||
|
||
# 剪枝优化
|
||
|
||
我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。
|
||
|
||
在遍历的过程中有如下代码:
|
||
|
||
```
|
||
for (int i = startIndex; i <= n; i++) {
|
||
path.push_back(i);
|
||
backtracking(n, k, i + 1);
|
||
path.pop_back();
|
||
}
|
||
```
|
||
|
||
这个遍历的范围是可以剪枝优化的,怎么优化呢?
|
||
|
||
来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。
|
||
|
||
这么说有点抽象,如图所示:
|
||
|
||

|
||
|
||
图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。
|
||
|
||
**所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置**。
|
||
|
||
**如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了**。
|
||
|
||
注意代码中i,就是for循环里选择的起始位置。
|
||
```
|
||
for (int i = startIndex; i <= n; i++) {
|
||
```
|
||
|
||
接下来看一下优化过程如下:
|
||
|
||
1. 已经选择的元素个数:path.size();
|
||
|
||
2. 还需要的元素个数为: k - path.size();
|
||
|
||
3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历
|
||
|
||
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
|
||
|
||
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
|
||
|
||
从2开始搜索都是合理的,可以是组合[2, 3, 4]。
|
||
|
||
这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。
|
||
|
||
所以优化之后的for循环是:
|
||
|
||
```
|
||
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置
|
||
```
|
||
|
||
优化后整体代码如下:
|
||
|
||
```
|
||
class Solution {
|
||
private:
|
||
vector<vector<int>> result;
|
||
vector<int> path;
|
||
void backtracking(int n, int k, int startIndex) {
|
||
if (path.size() == k) {
|
||
result.push_back(path);
|
||
return;
|
||
}
|
||
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
|
||
path.push_back(i); // 处理节点
|
||
backtracking(n, k, i + 1);
|
||
path.pop_back(); // 回溯,撤销处理的节点
|
||
}
|
||
}
|
||
public:
|
||
|
||
vector<vector<int>> combine(int n, int k) {
|
||
backtracking(n, k, 1);
|
||
return result;
|
||
}
|
||
};
|
||
```
|
||
|
||
# 剪枝总结
|
||
|
||
本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。
|
||
|
||
所以我依然是把整个回溯过程抽象为一颗树形结构,然后可以直观的看出,剪枝究竟是剪的哪里。
|
||
|
||
|
||
|
||
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
Java:
|
||
|
||
|
||
Python:
|
||
|
||
|
||
Go:
|
||
|
||
|
||
|
||
|
||
-----------------------
|
||
* 作者微信:[程序员Carl](https://mp.weixin.qq.com/s/b66DFkOp8OOxdZC_xLZxfw)
|
||
* B站视频:[代码随想录](https://space.bilibili.com/525438321)
|
||
* 知识星球:[代码随想录](https://mp.weixin.qq.com/s/QVF6upVMSbgvZy8lHZS3CQ)
|
||
<div align="center"><img src=../pics/公众号.png width=450 alt=> </img></div>
|