Files
leetcode-master/problems/0070.爬楼梯完全背包版本.md
youngyangyang04 dc5bb2c005 更新头部信息
2021-05-23 17:32:59 +08:00

6.0 KiB
Raw Blame History

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

# 动态规划:以前我没得选,现在我选择再爬一次!

之前讲这道题目的时候,因为还没有讲背包问题,所以就只是讲了一下爬楼梯最直接的动规方法(斐波那契)。

这次终于讲到了背包问题,我选择带录友们再爬一次楼梯!

70. 爬楼梯

链接:https://leetcode-cn.com/problems/climbing-stairs/

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2 输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

思路

这道题目 我们在动态规划:爬楼梯 中已经讲过一次了,原题其实是一道简单动规的题目。

既然这么简单为什么还要讲呢,其实本题稍加改动就是一道面试好题。

改为:一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢

1阶2阶.... m阶就是物品楼顶就是背包。

每一阶可以重复使用例如跳了1阶还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

和昨天的题目动态规划377. 组合总和 Ⅳ基本就是一道题了。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i]爬到有i个台阶的楼顶有dp[i]种方法

  1. 确定递推公式

动态规划494.目标和动态规划518.零钱兑换II动态规划377. 组合总和 Ⅳ中我们都讲过了求装满背包有几种方法递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢dp[i]有几种来源dp[i - 1]dp[i - 2]dp[i - 3] 等等dp[i - j]

那么递推公式为dp[i] += dp[i - j]

  1. dp数组如何初始化

既然递归公式是 dp[i] += dp[i - j]那么dp[0] 一定为1dp[0]是递归中一切数值的基础所在如果dp[0]是0的话其他数值都是0了。

下标非0的dp[i]初始化为0因为dp[i]是靠dp[i-j]累计上来的dp[i]本身为0这样才不会影响结果

  1. 确定遍历顺序

这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  1. 举例来推导dp数组

介于本题和动态规划377. 组合总和 Ⅳ几乎是一样的,这里我就不再重复举例了。

以上分析完毕C++代码如下:

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) { // 遍历背包
            for (int j = 1; j <= m; j++) { // 遍历物品
                if (i - j >= 0) dp[i] += dp[i - j];
            }
        }
        return dp[n];
    }
};

代码中m表示最多可以爬m个台阶代码中把m改成2就是本题70.爬楼梯可以AC的代码了。

总结

本题看起来是一道简单题目,稍稍进阶一下其实就是一个完全背包!

如果我来面试的话,我就会先给候选人出一个 本题原题,看其表现,如果顺利写出来,进而在要求每次可以爬[1 - m]个台阶应该怎么写。

顺便再考察一下两个for循环的嵌套顺序为什么target放外面nums放里面。

这就能考察对背包问题本质的掌握程度,候选人是不是刷题背公式,一眼就看出来了。

这么一连套下来,如果候选人都能答出来,相信任何一位面试官都是非常满意的。

本题代码不长题目也很普通但稍稍一进阶就可以考察完全背包而且题目进阶的内容在leetcode上并没有原题一定程度上就可以排除掉刷题党了简直是面试题目的绝佳选择

其他语言版本

Java

class Solution {
    public int climbStairs(int n) {
        int[] dp = new int[n + 1];
        int[] weight = {1,2};
        dp[0] = 1;

        for (int i = 0; i <= n; i++) {
            for (int j = 0; j < weight.length; j++) {
                if (i >= weight[j]) dp[i] += dp[i - weight[j]];
            }
        }

        return dp[n];
    }
}

Python

Go