mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-06 23:28:29 +08:00
@ -397,7 +397,39 @@ class Solution:
|
||||
|
||||
```
|
||||
|
||||
动态规划(版本五)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def uniquePathsWithObstacles(self, obstacleGrid):
|
||||
if obstacleGrid[0][0] == 1:
|
||||
return 0
|
||||
|
||||
m, n = len(obstacleGrid), len(obstacleGrid[0])
|
||||
|
||||
dp = [0] * n # 创建一个一维列表用于存储路径数
|
||||
|
||||
# 初始化第一行的路径数
|
||||
for j in range(n):
|
||||
if obstacleGrid[0][j] == 1:
|
||||
break
|
||||
dp[j] = 1
|
||||
|
||||
# 计算其他行的路径数
|
||||
for i in range(1, m):
|
||||
if obstacleGrid[i][0] == 1:
|
||||
dp[0] = 0
|
||||
for j in range(1, n):
|
||||
if obstacleGrid[i][j] == 1:
|
||||
dp[j] = 0
|
||||
continue
|
||||
|
||||
dp[j] += dp[j - 1]
|
||||
|
||||
return dp[-1] # 返回最后一个元素,即终点的路径数
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
|
||||
```go
|
||||
|
@ -262,10 +262,11 @@ class Solution:
|
||||
|
||||
# 计算切割点j和剩余部分(i-j)的乘积,并与之前的结果进行比较取较大值
|
||||
|
||||
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j))
|
||||
dp[i] = max(dp[i], (i - j) * j, dp[i - j] * j)
|
||||
|
||||
return dp[n] # 返回最终的计算结果
|
||||
|
||||
|
||||
```
|
||||
动态规划(版本二)
|
||||
```python
|
||||
|
@ -383,6 +383,21 @@ class Solution:
|
||||
return True
|
||||
return False
|
||||
|
||||
```
|
||||
|
||||
卡哥版(简化版)
|
||||
```python
|
||||
class Solution:
|
||||
def canPartition(self, nums: List[int]) -> bool:
|
||||
if sum(nums) % 2 != 0:
|
||||
return False
|
||||
target = sum(nums) // 2
|
||||
dp = [0] * (target + 1)
|
||||
for num in nums:
|
||||
for j in range(target, num-1, -1):
|
||||
dp[j] = max(dp[j], dp[j-num] + num)
|
||||
return dp[-1] == target
|
||||
|
||||
```
|
||||
二维DP版
|
||||
```python
|
||||
|
@ -282,7 +282,35 @@ class Solution:
|
||||
return dp1 # 返回到达楼顶的最小花费
|
||||
|
||||
```
|
||||
动态规划(版本三)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def minCostClimbingStairs(self, cost: List[int]) -> int:
|
||||
dp = [0] * len(cost)
|
||||
dp[0] = cost[0] # 第一步有花费
|
||||
dp[1] = cost[1]
|
||||
for i in range(2, len(cost)):
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
|
||||
# 注意最后一步可以理解为不用花费,所以取倒数第一步,第二步的最少值
|
||||
return min(dp[-1], dp[-2])
|
||||
|
||||
```
|
||||
动态规划(版本四)
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
def minCostClimbingStairs(self, cost: List[int]) -> int:
|
||||
n = len(cost)
|
||||
prev_1 = cost[0] # 前一步的最小花费
|
||||
prev_2 = cost[1] # 前两步的最小花费
|
||||
for i in range(2, n):
|
||||
current = min(prev_1, prev_2) + cost[i] # 当前位置的最小花费
|
||||
prev_1, prev_2 = prev_2, current # 更新前一步和前两步的最小花费
|
||||
return min(prev_1, prev_2) # 最后一步可以理解为不用花费,取倒数第一步和第二步的最少值
|
||||
|
||||
|
||||
```
|
||||
### Go
|
||||
```Go
|
||||
func minCostClimbingStairs(cost []int) int {
|
||||
|
@ -238,6 +238,21 @@ class Solution:
|
||||
|
||||
return total_sum - dp[target] - dp[target]
|
||||
|
||||
```
|
||||
|
||||
卡哥版(简化版)
|
||||
```python
|
||||
class Solution:
|
||||
def lastStoneWeightII(self, stones):
|
||||
total_sum = sum(stones)
|
||||
target = total_sum // 2
|
||||
dp = [0] * (target + 1)
|
||||
for stone in stones:
|
||||
for j in range(target, stone - 1, -1):
|
||||
dp[j] = max(dp[j], dp[j - stone] + stone)
|
||||
return total_sum - 2* dp[-1]
|
||||
|
||||
|
||||
```
|
||||
二维DP版
|
||||
```python
|
||||
|
Reference in New Issue
Block a user