Merge pull request #1814 from juguagua/leetcode-modify-the-code-of-the-backtracking

更新回溯部分:从“子集II” 到 “全排列II”
This commit is contained in:
程序员Carl
2022-12-11 10:09:39 +08:00
committed by GitHub
4 changed files with 103 additions and 87 deletions

View File

@ -275,29 +275,34 @@ class Solution:
### Go ### Go
```Go ```Go
var res [][]int var (
res [][]int
path []int
st []bool // state的缩写
)
func permute(nums []int) [][]int { func permute(nums []int) [][]int {
res = [][]int{} res, path = make([][]int, 0), make([]int, 0, len(nums))
backTrack(nums,len(nums),[]int{}) st = make([]bool, len(nums))
dfs(nums, 0)
return res return res
} }
func backTrack(nums []int,numsLen int,path []int) {
if len(nums)==0{ func dfs(nums []int, cur int) {
p:=make([]int,len(path)) if cur == len(nums) {
copy(p,path) tmp := make([]int, len(path))
res = append(res,p) copy(tmp, path)
res = append(res, tmp)
} }
for i:=0;i<numsLen;i++{ for i := 0; i < len(nums); i++ {
cur:=nums[i] if !st[i] {
path = append(path,cur) path = append(path, nums[i])
nums = append(nums[:i],nums[i+1:]...)//直接使用切片 st[i] = true
backTrack(nums,len(nums),path) dfs(nums, cur + 1)
nums = append(nums[:i],append([]int{cur},nums[i:]...)...)//回溯的时候切片也要复原,元素位置不能变 st[i] = false
path = path[:len(path)-1] path = path[:len(path)-1]
} }
} }
}
``` ```
### Javascript ### Javascript

View File

@ -49,7 +49,7 @@
**一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果** **一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果**
在[46.全排列](https://programmercarl.com/0046.全排列.html)中已经详讲解了排列问题的写法,在[40.组合总和II](https://programmercarl.com/0040.组合总和II.html) 、[90.子集II](https://programmercarl.com/0090.子集II.html)中详细讲解去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下: 在[46.全排列](https://programmercarl.com/0046.全排列.html)中已经详讲解了排列问题的写法,在[40.组合总和II](https://programmercarl.com/0040.组合总和II.html) 、[90.子集II](https://programmercarl.com/0090.子集II.html)中详细讲解去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:
## C++代码 ## C++代码
@ -225,33 +225,37 @@ class Solution:
### Go ### Go
```go ```go
var res [][]int var (
func permute(nums []int) [][]int { res [][]int
res = [][]int{} path []int
backTrack(nums,len(nums),[]int{}) st []bool // state的缩写
)
func permuteUnique(nums []int) [][]int {
res, path = make([][]int, 0), make([]int, 0, len(nums))
st = make([]bool, len(nums))
sort.Ints(nums)
dfs(nums, 0)
return res return res
} }
func backTrack(nums []int,numsLen int,path []int) {
if len(nums)==0{ func dfs(nums []int, cur int) {
p:=make([]int,len(path)) if cur == len(nums) {
copy(p,path) tmp := make([]int, len(path))
res = append(res,p) copy(tmp, path)
res = append(res, tmp)
} }
used := [21]int{}//跟前一题唯一的区别同一层不使用重复的数。关于used的思想carl在递增子序列那一题中提到过 for i := 0; i < len(nums); i++ {
for i:=0;i<numsLen;i++{ if i != 0 && nums[i] == nums[i-1] && !st[i-1] { // 去重用st来判别是深度还是广度
if used[nums[i]+10]==1{
continue continue
} }
cur:=nums[i] if !st[i] {
path = append(path,cur) path = append(path, nums[i])
used[nums[i]+10]=1 st[i] = true
nums = append(nums[:i],nums[i+1:]...) dfs(nums, cur + 1)
backTrack(nums,len(nums),path) st[i] = false
nums = append(nums[:i],append([]int{cur},nums[i:]...)...)
path = path[:len(path)-1] path = path[:len(path)-1]
} }
}
} }
``` ```

View File

@ -261,10 +261,10 @@ class Solution:
self.path.pop() self.path.pop()
``` ```
### Python3 #### Python3
不使用used数组 不使用used数组
```python3 ```python
class Solution: class Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]: def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
res = [] res = []
@ -291,7 +291,7 @@ class Solution:
``` ```
使用used数组 使用used数组
```python3 ```python
class Solution: class Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]: def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
result = [] result = []
@ -315,25 +315,29 @@ class Solution:
### Go ### Go
```Go ```Go
var res[][]int var (
path []int
res [][]int
)
func subsetsWithDup(nums []int) [][]int { func subsetsWithDup(nums []int) [][]int {
res=make([][]int,0) path, res = make([]int, 0, len(nums)), make([][]int, 0)
sort.Ints(nums) sort.Ints(nums)
dfs([]int{},nums,0) dfs(nums, 0)
return res return res
} }
func dfs(temp, num []int, start int) {
tmp:=make([]int,len(temp))
copy(tmp,temp)
func dfs(nums []int, start int) {
tmp := make([]int, len(path))
copy(tmp, path)
res = append(res, tmp) res = append(res, tmp)
for i:=start;i<len(num);i++{
if i>start&&num[i]==num[i-1]{ for i := start; i < len(nums); i++ {
if i != start && nums[i] == nums[i-1] {
continue continue
} }
temp=append(temp,num[i]) path = append(path, nums[i])
dfs(temp,num,i+1) dfs(nums, i+1)
temp=temp[:len(temp)-1] path = path[:len(path)-1]
} }
} }
``` ```

View File

@ -37,7 +37,7 @@
在[90.子集II](https://programmercarl.com/0090.子集II.html)中我们是通过排序,再加一个标记数组来达到去重的目的。 在[90.子集II](https://programmercarl.com/0090.子集II.html)中我们是通过排序,再加一个标记数组来达到去重的目的。
而本题求自增子序列,是不能对原数组行排序的,排完序的数组都是自增子序列了。 而本题求自增子序列,是不能对原数组行排序的,排完序的数组都是自增子序列了。
**所以不能使用之前的去重逻辑!** **所以不能使用之前的去重逻辑!**
@ -78,7 +78,7 @@ if (path.size() > 1) {
* 单层搜索逻辑 * 单层搜索逻辑
![491. 递增子序列1](https://img-blog.csdnimg.cn/20201124200229824.png) ![491. 递增子序列1](https://img-blog.csdnimg.cn/20201124200229824.png)
在图中可以看出,**同一父节点下的同层上使用过的元素就不能使用了** 在图中可以看出,**同一父节点下的同层上使用过的元素就不能使用了**
那么单层搜索代码如下: 那么单层搜索代码如下:
@ -340,30 +340,33 @@ class Solution:
``` ```
### Go ### Go
```golang ```go
var (
res [][]int
path []int
)
func findSubsequences(nums []int) [][]int { func findSubsequences(nums []int) [][]int {
var subRes []int res, path = make([][]int, 0), make([]int, 0, len(nums))
var res [][]int dfs(nums, 0)
backTring(0,nums,subRes,&res)
return res return res
} }
func backTring(startIndex int,nums,subRes []int,res *[][]int){ func dfs(nums []int, start int) {
if len(subRes)>1{ if len(path) >= 2 {
tmp:=make([]int,len(subRes)) tmp := make([]int, len(path))
copy(tmp,subRes) copy(tmp, path)
*res=append(*res,tmp) res = append(res, tmp)
} }
history:=[201]int{}//记录本层元素使用记录 used := make(map[int]bool, len(nums)) // 初始化used字典用以对同层元素去重
for i:=startIndex;i<len(nums);i++{ for i := start; i < len(nums); i++ {
//分两种情况判断:一,当前取的元素小于子集的最后一个元素,则继续寻找下一个适合的元素 if used[nums[i]] { // 去重
// 或者二,当前取的元素在本层已经出现过了,所以跳过该元素,继续寻找
if len(subRes)>0&&nums[i]<subRes[len(subRes)-1]||history[nums[i] + 100]==1{
continue continue
} }
history[nums[i] + 100]=1//表示本层该元素使用过了 if len(path) == 0 || nums[i] >= path[len(path)-1] {
subRes=append(subRes,nums[i]) path = append(path, nums[i])
backTring(i+1,nums,subRes,res) used[nums[i]] = true
subRes=subRes[:len(subRes)-1] dfs(nums, i+1)
path = path[:len(path)-1]
}
} }
} }
``` ```