mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-08 00:43:04 +08:00
Merge pull request #1814 from juguagua/leetcode-modify-the-code-of-the-backtracking
更新回溯部分:从“子集II” 到 “全排列II”
This commit is contained in:
@ -275,29 +275,34 @@ class Solution:
|
||||
|
||||
### Go
|
||||
```Go
|
||||
var res [][]int
|
||||
var (
|
||||
res [][]int
|
||||
path []int
|
||||
st []bool // state的缩写
|
||||
)
|
||||
func permute(nums []int) [][]int {
|
||||
res = [][]int{}
|
||||
backTrack(nums,len(nums),[]int{})
|
||||
return res
|
||||
}
|
||||
func backTrack(nums []int,numsLen int,path []int) {
|
||||
if len(nums)==0{
|
||||
p:=make([]int,len(path))
|
||||
copy(p,path)
|
||||
res = append(res,p)
|
||||
}
|
||||
for i:=0;i<numsLen;i++{
|
||||
cur:=nums[i]
|
||||
path = append(path,cur)
|
||||
nums = append(nums[:i],nums[i+1:]...)//直接使用切片
|
||||
backTrack(nums,len(nums),path)
|
||||
nums = append(nums[:i],append([]int{cur},nums[i:]...)...)//回溯的时候切片也要复原,元素位置不能变
|
||||
path = path[:len(path)-1]
|
||||
|
||||
}
|
||||
res, path = make([][]int, 0), make([]int, 0, len(nums))
|
||||
st = make([]bool, len(nums))
|
||||
dfs(nums, 0)
|
||||
return res
|
||||
}
|
||||
|
||||
func dfs(nums []int, cur int) {
|
||||
if cur == len(nums) {
|
||||
tmp := make([]int, len(path))
|
||||
copy(tmp, path)
|
||||
res = append(res, tmp)
|
||||
}
|
||||
for i := 0; i < len(nums); i++ {
|
||||
if !st[i] {
|
||||
path = append(path, nums[i])
|
||||
st[i] = true
|
||||
dfs(nums, cur + 1)
|
||||
st[i] = false
|
||||
path = path[:len(path)-1]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Javascript
|
||||
|
@ -49,7 +49,7 @@
|
||||
|
||||
**一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果**。
|
||||
|
||||
在[46.全排列](https://programmercarl.com/0046.全排列.html)中已经详解讲解了排列问题的写法,在[40.组合总和II](https://programmercarl.com/0040.组合总和II.html) 、[90.子集II](https://programmercarl.com/0090.子集II.html)中详细讲解的去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:
|
||||
在[46.全排列](https://programmercarl.com/0046.全排列.html)中已经详细讲解了排列问题的写法,在[40.组合总和II](https://programmercarl.com/0040.组合总和II.html) 、[90.子集II](https://programmercarl.com/0090.子集II.html)中详细讲解了去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:
|
||||
|
||||
## C++代码
|
||||
|
||||
@ -225,33 +225,37 @@ class Solution:
|
||||
### Go
|
||||
|
||||
```go
|
||||
var res [][]int
|
||||
func permute(nums []int) [][]int {
|
||||
res = [][]int{}
|
||||
backTrack(nums,len(nums),[]int{})
|
||||
return res
|
||||
var (
|
||||
res [][]int
|
||||
path []int
|
||||
st []bool // state的缩写
|
||||
)
|
||||
func permuteUnique(nums []int) [][]int {
|
||||
res, path = make([][]int, 0), make([]int, 0, len(nums))
|
||||
st = make([]bool, len(nums))
|
||||
sort.Ints(nums)
|
||||
dfs(nums, 0)
|
||||
return res
|
||||
}
|
||||
func backTrack(nums []int,numsLen int,path []int) {
|
||||
if len(nums)==0{
|
||||
p:=make([]int,len(path))
|
||||
copy(p,path)
|
||||
res = append(res,p)
|
||||
}
|
||||
used := [21]int{}//跟前一题唯一的区别,同一层不使用重复的数。关于used的思想carl在递增子序列那一题中提到过
|
||||
for i:=0;i<numsLen;i++{
|
||||
if used[nums[i]+10]==1{
|
||||
continue
|
||||
}
|
||||
cur:=nums[i]
|
||||
path = append(path,cur)
|
||||
used[nums[i]+10]=1
|
||||
nums = append(nums[:i],nums[i+1:]...)
|
||||
backTrack(nums,len(nums),path)
|
||||
nums = append(nums[:i],append([]int{cur},nums[i:]...)...)
|
||||
path = path[:len(path)-1]
|
||||
|
||||
}
|
||||
|
||||
func dfs(nums []int, cur int) {
|
||||
if cur == len(nums) {
|
||||
tmp := make([]int, len(path))
|
||||
copy(tmp, path)
|
||||
res = append(res, tmp)
|
||||
}
|
||||
for i := 0; i < len(nums); i++ {
|
||||
if i != 0 && nums[i] == nums[i-1] && !st[i-1] { // 去重,用st来判别是深度还是广度
|
||||
continue
|
||||
}
|
||||
if !st[i] {
|
||||
path = append(path, nums[i])
|
||||
st[i] = true
|
||||
dfs(nums, cur + 1)
|
||||
st[i] = false
|
||||
path = path[:len(path)-1]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -261,10 +261,10 @@ class Solution:
|
||||
self.path.pop()
|
||||
```
|
||||
|
||||
### Python3
|
||||
#### Python3
|
||||
|
||||
不使用used数组
|
||||
```python3
|
||||
```python
|
||||
class Solution:
|
||||
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
|
||||
res = []
|
||||
@ -291,7 +291,7 @@ class Solution:
|
||||
```
|
||||
|
||||
使用used数组
|
||||
```python3
|
||||
```python
|
||||
class Solution:
|
||||
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
|
||||
result = []
|
||||
@ -315,26 +315,30 @@ class Solution:
|
||||
### Go
|
||||
|
||||
```Go
|
||||
var res[][]int
|
||||
func subsetsWithDup(nums []int)[][]int {
|
||||
res=make([][]int,0)
|
||||
sort.Ints(nums)
|
||||
dfs([]int{},nums,0)
|
||||
return res
|
||||
var (
|
||||
path []int
|
||||
res [][]int
|
||||
)
|
||||
func subsetsWithDup(nums []int) [][]int {
|
||||
path, res = make([]int, 0, len(nums)), make([][]int, 0)
|
||||
sort.Ints(nums)
|
||||
dfs(nums, 0)
|
||||
return res
|
||||
}
|
||||
func dfs(temp, num []int, start int) {
|
||||
tmp:=make([]int,len(temp))
|
||||
copy(tmp,temp)
|
||||
|
||||
res=append(res,tmp)
|
||||
for i:=start;i<len(num);i++{
|
||||
if i>start&&num[i]==num[i-1]{
|
||||
continue
|
||||
}
|
||||
temp=append(temp,num[i])
|
||||
dfs(temp,num,i+1)
|
||||
temp=temp[:len(temp)-1]
|
||||
}
|
||||
func dfs(nums []int, start int) {
|
||||
tmp := make([]int, len(path))
|
||||
copy(tmp, path)
|
||||
res = append(res, tmp)
|
||||
|
||||
for i := start; i < len(nums); i++ {
|
||||
if i != start && nums[i] == nums[i-1] {
|
||||
continue
|
||||
}
|
||||
path = append(path, nums[i])
|
||||
dfs(nums, i+1)
|
||||
path = path[:len(path)-1]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
@ -37,7 +37,7 @@
|
||||
|
||||
在[90.子集II](https://programmercarl.com/0090.子集II.html)中我们是通过排序,再加一个标记数组来达到去重的目的。
|
||||
|
||||
而本题求自增子序列,是不能对原数组经行排序的,排完序的数组都是自增子序列了。
|
||||
而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。
|
||||
|
||||
**所以不能使用之前的去重逻辑!**
|
||||
|
||||
@ -78,7 +78,7 @@ if (path.size() > 1) {
|
||||
* 单层搜索逻辑
|
||||
|
||||

|
||||
在图中可以看出,**同一父节点下的同层上使用过的元素就不能在使用了**
|
||||
在图中可以看出,**同一父节点下的同层上使用过的元素就不能再使用了**
|
||||
|
||||
那么单层搜索代码如下:
|
||||
|
||||
@ -340,30 +340,33 @@ class Solution:
|
||||
```
|
||||
### Go
|
||||
|
||||
```golang
|
||||
```go
|
||||
var (
|
||||
res [][]int
|
||||
path []int
|
||||
)
|
||||
func findSubsequences(nums []int) [][]int {
|
||||
var subRes []int
|
||||
var res [][]int
|
||||
backTring(0,nums,subRes,&res)
|
||||
res, path = make([][]int, 0), make([]int, 0, len(nums))
|
||||
dfs(nums, 0)
|
||||
return res
|
||||
}
|
||||
func backTring(startIndex int,nums,subRes []int,res *[][]int){
|
||||
if len(subRes)>1{
|
||||
tmp:=make([]int,len(subRes))
|
||||
copy(tmp,subRes)
|
||||
*res=append(*res,tmp)
|
||||
func dfs(nums []int, start int) {
|
||||
if len(path) >= 2 {
|
||||
tmp := make([]int, len(path))
|
||||
copy(tmp, path)
|
||||
res = append(res, tmp)
|
||||
}
|
||||
history:=[201]int{}//记录本层元素使用记录
|
||||
for i:=startIndex;i<len(nums);i++{
|
||||
//分两种情况判断:一,当前取的元素小于子集的最后一个元素,则继续寻找下一个适合的元素
|
||||
// 或者二,当前取的元素在本层已经出现过了,所以跳过该元素,继续寻找
|
||||
if len(subRes)>0&&nums[i]<subRes[len(subRes)-1]||history[nums[i] + 100]==1{
|
||||
used := make(map[int]bool, len(nums)) // 初始化used字典,用以对同层元素去重
|
||||
for i := start; i < len(nums); i++ {
|
||||
if used[nums[i]] { // 去重
|
||||
continue
|
||||
}
|
||||
history[nums[i] + 100]=1//表示本层该元素使用过了
|
||||
subRes=append(subRes,nums[i])
|
||||
backTring(i+1,nums,subRes,res)
|
||||
subRes=subRes[:len(subRes)-1]
|
||||
if len(path) == 0 || nums[i] >= path[len(path)-1] {
|
||||
path = append(path, nums[i])
|
||||
used[nums[i]] = true
|
||||
dfs(nums, i+1)
|
||||
path = path[:len(path)-1]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
Reference in New Issue
Block a user