mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-08 16:54:50 +08:00
Update
This commit is contained in:
@ -71,14 +71,14 @@ vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
|
||||
* 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
|
||||
* 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
|
||||
|
||||
选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][0]);
|
||||
选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);
|
||||
|
||||
同理dp[i][2]也有两个操作:
|
||||
|
||||
* 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
|
||||
* 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
|
||||
|
||||
所以dp[i][2] = max(dp[i - 1][i] + prices[i], dp[i][2])
|
||||
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
|
||||
|
||||
同理可以类比剩下的状态,代码如下:
|
||||
|
||||
|
@ -64,6 +64,8 @@
|
||||
|
||||
那么问题来了,定义一个大小为k的大顶堆,在每次移动更新大顶堆的时候,每次弹出都把最大的元素弹出去了,那么怎么保留下来前K个高频元素呢。
|
||||
|
||||
而且使用大顶堆就要把所有元素都进行排序,那能不能只排序k个元素呢?
|
||||
|
||||
**所以我们要用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。**
|
||||
|
||||
寻找前k个最大元素流程如图所示:(图中的频率只有三个,所以正好构成一个大小为3的小顶堆,如果频率更多一些,则用这个小顶堆进行扫描)
|
||||
|
@ -34,7 +34,7 @@
|
||||
* 解释:S 会变成 “c”,但 T 仍然是 “b”。
|
||||
|
||||
|
||||
# 思路
|
||||
## 思路
|
||||
|
||||
本文将给出 空间复杂度$O(n)$的栈模拟方法 以及空间复杂度是$O(1)$的双指针方法。
|
||||
|
||||
@ -155,9 +155,9 @@ public:
|
||||
* 空间复杂度:$O(1)$
|
||||
|
||||
|
||||
# 其他语言版本
|
||||
## 其他语言版本
|
||||
|
||||
Java:
|
||||
### Java:
|
||||
|
||||
```java
|
||||
// 普通方法(使用栈的思路)
|
||||
@ -185,9 +185,8 @@ class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
Python:
|
||||
|
||||
python3
|
||||
### python
|
||||
|
||||
```python
|
||||
class Solution:
|
||||
@ -207,8 +206,7 @@ class Solution:
|
||||
pass
|
||||
```
|
||||
|
||||
|
||||
Go:
|
||||
### Go
|
||||
|
||||
```go
|
||||
|
||||
@ -230,7 +228,7 @@ func backspaceCompare(s string, t string) bool {
|
||||
|
||||
```
|
||||
|
||||
JavaScript:
|
||||
### JavaScript
|
||||
```javascript
|
||||
// 双栈
|
||||
var backspaceCompare = function(s, t) {
|
||||
|
@ -34,7 +34,7 @@
|
||||
* 输出:true
|
||||
* 解释:长按名字中的字符并不是必要的。
|
||||
|
||||
# 思路
|
||||
## 思路
|
||||
|
||||
这道题目一看以为是哈希,仔细一看不行,要有顺序。
|
||||
|
||||
@ -94,9 +94,9 @@ public:
|
||||
空间复杂度:$O(1)$
|
||||
|
||||
|
||||
# 其他语言版本
|
||||
## 其他语言版本
|
||||
|
||||
Java:
|
||||
### Java
|
||||
```java
|
||||
class Solution {
|
||||
public boolean isLongPressedName(String name, String typed) {
|
||||
@ -127,7 +127,7 @@ class Solution {
|
||||
}
|
||||
}
|
||||
```
|
||||
Python:
|
||||
### Python
|
||||
```python
|
||||
class Solution:
|
||||
def isLongPressedName(self, name: str, typed: str) -> bool:
|
||||
@ -154,7 +154,7 @@ class Solution:
|
||||
return True
|
||||
```
|
||||
|
||||
Go:
|
||||
### Go
|
||||
|
||||
```go
|
||||
|
||||
@ -179,7 +179,7 @@ func isLongPressedName(name string, typed string) bool {
|
||||
}
|
||||
```
|
||||
|
||||
JavaScript:
|
||||
### JavaScript:
|
||||
```javascript
|
||||
var isLongPressedName = function(name, typed) {
|
||||
let i = 0, j = 0;
|
||||
|
@ -38,7 +38,7 @@
|
||||
* 输出:2
|
||||
* 解释:s 可以分割为 "RL"、"RRRLLRLL" ,每个子字符串中都包含相同数量的 'L' 和 'R' 。
|
||||
|
||||
# 思路
|
||||
## 思路
|
||||
|
||||
这道题目看起来好像很复杂,其实是非常简单的贪心,关于贪心,我在这里[关于贪心算法,你该了解这些!](https://programmercarl.com/贪心算法理论基础.html)有详细的讲解。
|
||||
|
||||
@ -71,7 +71,7 @@ public:
|
||||
};
|
||||
```
|
||||
|
||||
# 拓展
|
||||
## 拓展
|
||||
|
||||
一些同学可能想,你这个推理不靠谱,都没有数学证明。怎么就能说是合理的呢,怎么就能说明 局部最优可以推出全局最优呢?
|
||||
|
||||
@ -86,9 +86,9 @@ public:
|
||||
|
||||
|
||||
|
||||
# 其他语言版本
|
||||
## 其他语言版本
|
||||
|
||||
## Java
|
||||
### Java
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
@ -105,17 +105,17 @@ class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
## Python
|
||||
### Python
|
||||
|
||||
```python
|
||||
```
|
||||
|
||||
## Go
|
||||
### Go
|
||||
|
||||
```go
|
||||
```
|
||||
|
||||
## JavaScript
|
||||
### JavaScript
|
||||
|
||||
```js
|
||||
var balancedStringSplit = function(s) {
|
||||
|
Reference in New Issue
Block a user