Merge pull request #2768 from DraculaJay/master

0053 添加python动态规划解法和动态规划优化解法
This commit is contained in:
程序员Carl
2024-10-23 09:42:50 +08:00
committed by GitHub
2 changed files with 53 additions and 0 deletions

View File

@ -240,6 +240,42 @@ class Solution:
res = max(res, dp[i])
return res
```
动态规划
```python
class Solution:
def maxSubArray(self, nums):
if not nums:
return 0
dp = [0] * len(nums) # dp[i]表示包括i之前的最大连续子序列和
dp[0] = nums[0]
result = dp[0]
for i in range(1, len(nums)):
dp[i] = max(dp[i-1]+nums[i], nums[i]) # 状态转移公式
if dp[i] > result:
result = dp[i] # result 保存dp[i]的最大值
return result
```
动态规划优化
```python
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
max_sum = float("-inf") # 初始化结果为负无穷大,方便比较取最大值
current_sum = 0 # 初始化当前连续和
for num in nums:
# 更新当前连续和
# 如果原本的连续和加上当前数字之后没有当前数字大,说明原本的连续和是负数,那么就直接从当前数字开始重新计算连续和
current_sum = max(current_sum+num, num)
max_sum = max(max_sum, current_sum) # 更新结果
return max_sum
```
### Go
贪心法
```go

View File

@ -143,6 +143,23 @@ class Solution:
return False
```
```python
## 基于当前最远可到达位置判断
class Solution:
def canJump(self, nums: List[int]) -> bool:
far = nums[0]
for i in range(len(nums)):
# 要考虑两个情况
# 1. i <= far - 表示 当前位置i 可以到达
# 2. i > far - 表示 当前位置i 无法到达
if i > far:
return False
far = max(far, nums[i]+i)
# 如果循环正常结束,表示最后一个位置也可以到达,否则会在中途直接退出
# 关键点在于,要想明白其实列表中的每个位置都是需要验证能否到达的
return True
```
### Go
```go