update 0300.最长上升子序列: 修改文本错字,调整其他语言代码位置

This commit is contained in:
Yuhao Ju
2022-12-29 22:12:32 +08:00
committed by GitHub
parent 8cb8f7f56a
commit aa00784693

View File

@ -36,9 +36,9 @@
首先通过本题大家要明确什么是子序列,“子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序”。
本题也是代码随想录中子序列问题的第一题,如果没接触过这种题目的话,本题还是很难的,甚至想暴力去搜索也不知道怎么搜。
子序列问题是动态规划解决的经典问题当前下标i的递增子序列长度其实和i之前的下表j的子序列长度有关系又是什么样的关系呢。
子序列问题是动态规划解决的经典问题当前下标i的递增子序列长度其实和i之前的下表j的子序列长度有关系那又是什么样的关系呢。
接下来,我们依然用动规五部曲来分析详细一波:
接下来,我们依然用动规五部曲来详细分析一波:
1. dp[i]的定义
@ -46,7 +46,7 @@
**dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度**
为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如算递增呢。
为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如算递增呢。
2. 状态转移方程
@ -155,31 +155,6 @@ class Solution:
```
Go
```go
func lengthOfLIS(nums []int ) int {
dp := []int{}
for _, num := range nums {
if len(dp) ==0 || dp[len(dp) - 1] < num {
dp = append(dp, num)
} else {
l, r := 0, len(dp) - 1
pos := r
for l <= r {
mid := (l + r) >> 1
if dp[mid] >= num {
pos = mid;
r = mid - 1
} else {
l = mid + 1
}
}
dp[pos] = num
}//二分查找
}
return len(dp)
}
```
```go
// 动态规划求解
func lengthOfLIS(nums []int) int {
@ -212,21 +187,29 @@ func max(x, y int) int {
return y
}
```
Rust:
```rust
pub fn length_of_lis(nums: Vec<i32>) -> i32 {
let mut dp = vec![1; nums.len() + 1];
let mut result = 1;
for i in 1..nums.len() {
for j in 0..i {
if nums[j] < nums[i] {
dp[i] = dp[i].max(dp[j] + 1);
}
result = result.max(dp[i]);
}
}
result
贪心+二分 优化
```go
func lengthOfLIS(nums []int ) int {
dp := []int{}
for _, num := range nums {
if len(dp) == 0 || dp[len(dp) - 1] < num {
dp = append(dp, num)
} else {
l, r := 0, len(dp) - 1
pos := r
for l <= r {
mid := (l + r) >> 1
if dp[mid] >= num {
pos = mid;
r = mid - 1
} else {
l = mid + 1
}
}
dp[pos] = num
}//二分查找
}
return len(dp)
}
```
@ -270,6 +253,22 @@ function lengthOfLIS(nums: number[]): number {
};
```
Rust:
```rust
pub fn length_of_lis(nums: Vec<i32>) -> i32 {
let mut dp = vec![1; nums.len() + 1];
let mut result = 1;
for i in 1..nums.len() {
for j in 0..i {
if nums[j] < nums[i] {
dp[i] = dp[i].max(dp[j] + 1);
}
result = result.max(dp[i]);
}
}
result
}
```