Merge branch 'master' of github.com:youngyangyang04/leetcode-master

This commit is contained in:
youngyangyang04
2022-03-05 17:12:46 +08:00
5 changed files with 314 additions and 7 deletions

View File

@ -10,7 +10,7 @@
[力扣题目链接](https://leetcode-cn.com/problems/spiral-matrix-ii/)
给定一个正整数 n生成一个包含 1 到 $n^2$ 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
给定一个正整数 n生成一个包含 1 到 n^2 所有元素且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:

View File

@ -304,6 +304,48 @@ class Solution {
return true;
}
}
//方法二:比上面的方法时间复杂度低,更好地剪枝,优化时间复杂度
class Solution {
List<String> result = new ArrayList<String>();
StringBuilder stringBuilder = new StringBuilder();
public List<String> restoreIpAddresses(String s) {
restoreIpAddressesHandler(s, 0, 0);
return result;
}
// number表示stringbuilder中ip段的数量
public void restoreIpAddressesHandler(String s, int start, int number) {
// 如果start等于s的长度并且ip段的数量是4则加入结果集并返回
if (start == s.length() && number == 4) {
result.add(stringBuilder.toString());
return;
}
// 如果start等于s的长度但是ip段的数量不为4或者ip段的数量为4但是start小于s的长度则直接返回
if (start == s.length() || number == 4) {
return;
}
// 剪枝ip段的长度最大是3并且ip段处于[0,255]
for (int i = start; i < s.length() && i - start < 3 && Integer.parseInt(s.substring(start, i + 1)) >= 0
&& Integer.parseInt(s.substring(start, i + 1)) <= 255; i++) {
// 如果ip段的长度大于1并且第一位为0的话continue
if (i + 1 - start > 1 && s.charAt(start) - '0' == 0) {
continue;
}
stringBuilder.append(s.substring(start, i + 1));
// 当stringBuilder里的网段数量小于3时才会加点如果等于3说明已经有3段了最后一段不需要再加点
if (number < 3) {
stringBuilder.append(".");
}
number++;
restoreIpAddressesHandler(s, i + 1, number);
number--;
// 删除当前stringBuilder最后一个网段注意考虑点的数量的问题
stringBuilder.delete(start + number, i + number + 2);
}
}
}
```
## python

View File

@ -523,8 +523,8 @@ func maxdepth(root *treenode) int {
```javascript
var maxdepth = function(root) {
if (!root) return root
return 1 + math.max(maxdepth(root.left), maxdepth(root.right))
if (root === null) return 0;
return 1 + Math.max(maxdepth(root.left), maxdepth(root.right))
};
```
@ -541,7 +541,7 @@ var maxdepth = function(root) {
//3. 确定单层逻辑
let leftdepth=getdepth(node.left);
let rightdepth=getdepth(node.right);
let depth=1+math.max(leftdepth,rightdepth);
let depth=1+Math.max(leftdepth,rightdepth);
return depth;
}
return getdepth(root);
@ -591,7 +591,9 @@ var maxDepth = function(root) {
count++
while(size--) {
let node = queue.shift()
node && (queue = [...queue, ...node.children])
for (let item of node.children) {
item && queue.push(item);
}
}
}
return count

View File

@ -19,7 +19,7 @@
**首先要注意是判断左叶子,不是二叉树左侧节点,所以不要上来想着层序遍历。**
因为题目中其实没有说清楚左叶子究竟是什么节点,那么我来给出左叶子的明确定义:**如果左节点不为空,且左节点没有左右孩子,那么这个节点就是左叶子**
因为题目中其实没有说清楚左叶子究竟是什么节点,那么我来给出左叶子的明确定义:**如果左节点不为空,且左节点没有左右孩子,那么这个节点的左节点就是左叶子**
大家思考一下如下图中二叉树,左叶子之和究竟是多少?

View File

@ -394,7 +394,7 @@ var postorder = function (root, list) {
```javascript
var preorderTraversal = function (root) {
let res = [];
if (root === null) return rs;
if (root === null) return res;
let stack = [root],
cur = null;
while (stack.length) {
@ -536,6 +536,269 @@ function backtracking(参数) {
}
```
TypeScript
## 二分查找法
使用左闭右闭区间
```typescript
var search = function (nums: number[], target: number): number {
let left: number = 0, right: number = nums.length - 1;
// 使用左闭右闭区间
while (left <= right) {
let mid: number = left + Math.floor((right - left)/2);
if (nums[mid] > target) {
right = mid - 1; // 去左面闭区间寻找
} else if (nums[mid] < target) {
left = mid + 1; // 去右面闭区间寻找
} else {
return mid;
}
}
return -1;
};
```
使用左闭右开区间
```typescript
var search = function (nums: number[], target: number): number {
let left: number = 0, right: number = nums.length;
// 使用左闭右开区间 [left, right)
while (left < right) {
let mid: number = left + Math.floor((right - left)/2);
if (nums[mid] > target) {
right = mid; // 去左面闭区间寻找
} else if (nums[mid] < target) {
left = mid + 1; // 去右面闭区间寻找
} else {
return mid;
}
}
return -1;
};
```
## KMP
```typescript
var kmp = function (next: number[], s: number): void {
next[0] = -1;
let j: number = -1;
for(let i: number = 1; i < s.length; i++){
while (j >= 0 && s[i] !== s[j + 1]) {
j = next[j];
}
if (s[i] === s[j + 1]) {
j++;
}
next[i] = j;
}
}
```
## 二叉树
### 深度优先遍历(递归)
二叉树节点定义:
```typescript
class TreeNode {
val: number
left: TreeNode | null
right: TreeNode | null
constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
this.val = (val===undefined ? 0 : val)
this.left = (left===undefined ? null : left)
this.right = (right===undefined ? null : right)
}
}
```
前序遍历(中左右):
```typescript
var preorder = function (root: TreeNode | null, list: number[]): void {
if (root === null) return;
list.push(root.val); // 中
preorder(root.left, list); // 左
preorder(root.right, list); // 右
}
```
中序遍历(左中右):
```typescript
var inorder = function (root: TreeNode | null, list: number[]): void {
if (root === null) return;
inorder(root.left, list); // 左
list.push(root.val); // 中
inorder(root.right, list); // 右
}
```
后序遍历(左右中):
```typescript
var postorder = function (root: TreeNode | null, list: number[]): void {
if (root === null) return;
postorder(root.left, list); // 左
postorder(root.right, list); // 右
list.push(root.val); // 中
}
```
### 深度优先遍历(迭代)
前序遍历(中左右):
```typescript
var preorderTraversal = function (root: TreeNode | null): number[] {
let res: number[] = [];
if (root === null) return res;
let stack: TreeNode[] = [root],
cur: TreeNode | null = null;
while (stack.length) {
cur = stack.pop();
res.push(cur.val);
cur.right && stack.push(cur.right);
cur.left && stack.push(cur.left);
}
return res;
};
```
中序遍历(左中右):
```typescript
var inorderTraversal = function (root: TreeNode | null): number[] {
let res: number[] = [];
if (root === null) return res;
let stack: TreeNode[] = [];
let cur: TreeNode | null = root;
while (stack.length == 0 || cur !== null) {
if (cur !== null) {
stack.push(cur);
cur = cur.left;
} else {
cur = stack.pop();
res.push(cur.val);
cur = cur.right;
}
}
return res;
};
```
后序遍历(左右中):
```typescript
var postorderTraversal = function (root: TreeNode | null): number[] {
let res: number[] = [];
if (root === null) return res;
let stack: TreeNode[] = [root];
let cur: TreeNode | null = null;
while (stack.length) {
cur = stack.pop();
res.push(cur.val);
cur.left && stack.push(cur.left);
cur.right && stack.push(cur.right);
}
return res.reverse()
};
```
### 广度优先遍历(队列)
```typescript
var levelOrder = function (root: TreeNode | null): number[] {
let res: number[] = [];
if (root === null) return res;
let queue: TreeNode[] = [root];
while (queue.length) {
let n: number = queue.length;
let temp: number[] = [];
for (let i: number = 0; i < n; i++) {
let node: TreeNode = queue.shift();
temp.push(node.val);
node.left && queue.push(node.left);
node.right && queue.push(node.right);
}
res.push(temp);
}
return res;
};
```
### 二叉树深度
```typescript
var getDepth = function (node: TreNode | null): number {
if (node === null) return 0;
return 1 + Math.max(getDepth(node.left), getDepth(node.right));
}
```
### 二叉树节点数量
```typescript
var countNodes = function (root: TreeNode | null): number {
if (root === null) return 0;
return 1 + countNodes(root.left) + countNodes(root.right);
}
```
## 回溯算法
```typescript
function backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
```
## 并查集
```typescript
let n: number = 1005; // 根据题意而定
let father: number[] = new Array(n).fill(0);
// 并查集初始化
function init () {
for (int i: number = 0; i < n; ++i) {
father[i] = i;
}
}
// 并查集里寻根的过程
function find (u: number): number {
return u === father[u] ? u : father[u] = find(father[u]);
}
// 将v->u 这条边加入并查集
function join(u: number, v: number) {
u = find(u);
v = find(v);
if (u === v) return ;
father[v] = u;
}
// 判断 u 和 v是否找到同一个根
function same(u: number, v: number): boolean {
u = find(u);
v = find(v);
return u === v;
}
```
Java