更新并补充了kama0109.冗余链接II的Java版本,附有详细注释

This commit is contained in:
cyxiwai
2024-09-13 10:02:13 +08:00
parent dc2edca6ab
commit 8be83e8138

View File

@ -250,7 +250,105 @@ int main() {
## 其他语言版本
### Java
```java
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Main {
static int n;
static int[] father = new int[1001]; // 并查集数组
// 并查集初始化
public static void init() {
for (int i = 1; i <= n; ++i) {
father[i] = i;
}
}
// 并查集里寻根的过程
public static int find(int u) {
if (u == father[u]) return u;
return father[u] = find(father[u]); // 路径压缩
}
// 将 v->u 这条边加入并查集
public static void join(int u, int v) {
u = find(u);
v = find(v);
if (u != v) {
father[v] = u; // 合并两棵树
}
}
// 判断 u 和 v 是否有同一个根
public static boolean same(int u, int v) {
return find(u) == find(v);
}
// 在有向图里找到删除的那条边,使其变成树
public static void getRemoveEdge(List<int[]> edges) {
init(); // 初始化并查集
for (int i = 0; i < n; i++) { // 遍历所有的边
if (same(edges.get(i)[0], edges.get(i)[1])) { // 如果构成有向环了,就是要删除的边
System.out.println(edges.get(i)[0] + " " + edges.get(i)[1]);
return;
} else {
join(edges.get(i)[0], edges.get(i)[1]);
}
}
}
// 删一条边之后判断是不是树
public static boolean isTreeAfterRemoveEdge(List<int[]> edges, int deleteEdge) {
init(); // 初始化并查集
for (int i = 0; i < n; i++) {
if (i == deleteEdge) continue;
if (same(edges.get(i)[0], edges.get(i)[1])) { // 如果构成有向环了,一定不是树
return false;
}
join(edges.get(i)[0], edges.get(i)[1]);
}
return true;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
List<int[]> edges = new ArrayList<>(); // 存储所有的边
n = sc.nextInt(); // 顶点数
int[] inDegree = new int[n + 1]; // 记录每个节点的入度
for (int i = 0; i < n; i++) {
int s = sc.nextInt(); // 边的起点
int t = sc.nextInt(); // 边的终点
inDegree[t]++;
edges.add(new int[]{s, t}); // 将边加入列表
}
List<Integer> vec = new ArrayList<>(); // 记录入度为2的边如果有的话就两条边
// 找入度为2的节点所对应的边注意要倒序因为优先删除最后出现的一条边
for (int i = n - 1; i >= 0; i--) {
if (inDegree[edges.get(i)[1]] == 2) {
vec.add(i);
}
}
// 情况一、情况二
if (vec.size() > 0) {
// vec里的边已经按照倒叙放的所以优先删 vec.get(0) 这条边
if (isTreeAfterRemoveEdge(edges, vec.get(0))) {
System.out.println(edges.get(vec.get(0))[0] + " " + edges.get(vec.get(0))[1]);
} else {
System.out.println(edges.get(vec.get(1))[0] + " " + edges.get(vec.get(1))[1]);
}
return;
}
// 处理情况三明确没有入度为2的情况一定有有向环找到构成环的边返回即可
getRemoveEdge(edges);
}
}
```
### Python
### Go