mirror of
https://github.com/youngyangyang04/leetcode-master.git
synced 2025-07-09 02:53:31 +08:00
Merge branch 'master' of github.com:youngyangyang04/leetcode-master
This commit is contained in:
@ -349,6 +349,7 @@ function twoSum(nums: number[], target: number): number[] {
|
||||
index = helperMap.get(target - nums[i]);
|
||||
if (index !== undefined) {
|
||||
resArr = [i, index];
|
||||
break;
|
||||
}
|
||||
helperMap.set(nums[i], i);
|
||||
}
|
||||
|
@ -260,7 +260,7 @@ class Solution {
|
||||
|
||||
}
|
||||
|
||||
//每次迭代获取一个字符串,所以会设计大量的字符串拼接,所以这里选择更为高效的 StringBuilder
|
||||
//每次迭代获取一个字符串,所以会涉及大量的字符串拼接,所以这里选择更为高效的 StringBuilder
|
||||
StringBuilder temp = new StringBuilder();
|
||||
|
||||
//比如digits如果为"23",num 为0,则str表示2对应的 abc
|
||||
@ -274,7 +274,7 @@ class Solution {
|
||||
String str = numString[digits.charAt(num) - '0'];
|
||||
for (int i = 0; i < str.length(); i++) {
|
||||
temp.append(str.charAt(i));
|
||||
//c
|
||||
//递归,处理下一层
|
||||
backTracking(digits, numString, num + 1);
|
||||
//剔除末尾的继续尝试
|
||||
temp.deleteCharAt(temp.length() - 1);
|
||||
|
@ -22,10 +22,12 @@
|
||||
|
||||
输入:head = [1,2,3,4,5], n = 2
|
||||
输出:[1,2,3,5]
|
||||
|
||||
示例 2:
|
||||
|
||||
输入:head = [1], n = 1
|
||||
输出:[]
|
||||
|
||||
示例 3:
|
||||
|
||||
输入:head = [1,2], n = 1
|
||||
@ -111,7 +113,6 @@ class Solution {
|
||||
for (int i = 0; i <= n; i++) {
|
||||
fastIndex = fastIndex.next;
|
||||
}
|
||||
|
||||
while (fastIndex != null) {
|
||||
fastIndex = fastIndex.next;
|
||||
slowIndex = slowIndex.next;
|
||||
@ -194,15 +195,17 @@ func removeNthFromEnd(head *ListNode, n int) *ListNode {
|
||||
* @return {ListNode}
|
||||
*/
|
||||
var removeNthFromEnd = function (head, n) {
|
||||
let ret = new ListNode(0, head),
|
||||
slow = fast = ret;
|
||||
// 创建哨兵节点,简化解题逻辑
|
||||
let dummyHead = new ListNode(0, head);
|
||||
let fast = dummyHead;
|
||||
let slow = dummyHead;
|
||||
while (n--) fast = fast.next;
|
||||
while (fast.next !== null) {
|
||||
slow = slow.next;
|
||||
fast = fast.next;
|
||||
slow = slow.next
|
||||
};
|
||||
}
|
||||
slow.next = slow.next.next;
|
||||
return ret.next;
|
||||
return dummyHead.next;
|
||||
};
|
||||
```
|
||||
### TypeScript:
|
||||
|
@ -476,6 +476,32 @@ public class Solution {
|
||||
}
|
||||
```
|
||||
|
||||
###Dart:
|
||||
```dart
|
||||
int removeElement(List<int> nums, int val) {
|
||||
//相向双指针法
|
||||
var left = 0;
|
||||
var right = nums.length - 1;
|
||||
while (left <= right) {
|
||||
//寻找左侧的val,将其被右侧非val覆盖
|
||||
if (nums[left] == val) {
|
||||
while (nums[right] == val&&left<=right) {
|
||||
right--;
|
||||
if (right < 0) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
nums[left] = nums[right--];
|
||||
} else {
|
||||
left++;
|
||||
}
|
||||
}
|
||||
//覆盖后可以将0至left部分视为所需部分
|
||||
return left;
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||||
|
@ -314,17 +314,17 @@ func searchInsert(nums []int, target int) int {
|
||||
```rust
|
||||
impl Solution {
|
||||
pub fn search_insert(nums: Vec<i32>, target: i32) -> i32 {
|
||||
let mut left = 0;
|
||||
let mut right = nums.len();
|
||||
while left < right {
|
||||
use std::cmp::Ordering::{Equal, Greater, Less};
|
||||
let (mut left, mut right) = (0, nums.len() as i32 - 1);
|
||||
while left <= right {
|
||||
let mid = (left + right) / 2;
|
||||
match nums[mid].cmp(&target) {
|
||||
Ordering::Less => left = mid + 1,
|
||||
Ordering::Equal => return ((left + right) / 2) as i32,
|
||||
Ordering::Greater => right = mid,
|
||||
match nums[mid as usize].cmp(&target) {
|
||||
Less => left = mid + 1,
|
||||
Equal => return mid,
|
||||
Greater => right = mid - 1,
|
||||
}
|
||||
}
|
||||
((left + right) / 2) as i32
|
||||
right + 1
|
||||
}
|
||||
}
|
||||
```
|
||||
|
@ -224,7 +224,7 @@ public:
|
||||
|
||||
|
||||
### Java
|
||||
|
||||
解法一:
|
||||
```java
|
||||
class Solution {
|
||||
public void solveSudoku(char[][] board) {
|
||||
@ -291,7 +291,73 @@ class Solution {
|
||||
}
|
||||
}
|
||||
```
|
||||
解法二(bitmap标记)
|
||||
```
|
||||
class Solution{
|
||||
int[] rowBit = new int[9];
|
||||
int[] colBit = new int[9];
|
||||
int[] square9Bit = new int[9];
|
||||
|
||||
public void solveSudoku(char[][] board) {
|
||||
// 1 10 11
|
||||
for (int y = 0; y < board.length; y++) {
|
||||
for (int x = 0; x < board[y].length; x++) {
|
||||
int numBit = 1 << (board[y][x] - '1');
|
||||
rowBit[y] ^= numBit;
|
||||
colBit[x] ^= numBit;
|
||||
square9Bit[(y / 3) * 3 + x / 3] ^= numBit;
|
||||
}
|
||||
}
|
||||
backtrack(board, 0);
|
||||
}
|
||||
|
||||
public boolean backtrack(char[][] board, int n) {
|
||||
if (n >= 81) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// 快速算出行列编号 n/9 n%9
|
||||
int row = n / 9;
|
||||
int col = n % 9;
|
||||
|
||||
if (board[row][col] != '.') {
|
||||
return backtrack(board, n + 1);
|
||||
}
|
||||
|
||||
for (char c = '1'; c <= '9'; c++) {
|
||||
int numBit = 1 << (c - '1');
|
||||
if (!isValid(numBit, row, col)) continue;
|
||||
{
|
||||
board[row][col] = c; // 当前的数字放入到数组之中,
|
||||
rowBit[row] ^= numBit; // 第一行rowBit[0],第一个元素eg: 1 , 0^1=1,第一个元素:4, 100^1=101,...
|
||||
colBit[col] ^= numBit;
|
||||
square9Bit[(row / 3) * 3 + col / 3] ^= numBit;
|
||||
}
|
||||
if (backtrack(board, n + 1)) return true;
|
||||
{
|
||||
board[row][col] = '.'; // 不满足条件,回退成'.'
|
||||
rowBit[row] &= ~numBit; // 第一行rowBit[0],第一个元素eg: 1 , 101&=~1==>101&111111110==>100
|
||||
colBit[col] &= ~numBit;
|
||||
square9Bit[(row / 3) * 3 + col / 3] &= ~numBit;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
boolean isValid(int numBit, int row, int col) {
|
||||
// 左右
|
||||
if ((rowBit[row] & numBit) > 0) return false;
|
||||
// 上下
|
||||
if ((colBit[col] & numBit) > 0) return false;
|
||||
// 9宫格: 快速算出第n个九宫格,编号[0,8] , 编号=(row / 3) * 3 + col / 3
|
||||
if ((square9Bit[(row / 3) * 3 + col / 3] & numBit) > 0) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
```
|
||||
### Python
|
||||
|
||||
```python
|
||||
|
@ -311,7 +311,7 @@ class Solution:
|
||||
|
||||
for i in range(startIndex, len(candidates)):
|
||||
if total + candidates[i] > target:
|
||||
continue
|
||||
break
|
||||
total += candidates[i]
|
||||
path.append(candidates[i])
|
||||
self.backtracking(candidates, target, total, i, path, result)
|
||||
|
@ -211,10 +211,33 @@ func main() {
|
||||
```
|
||||
|
||||
### JavaScript:
|
||||
|
||||
```javaScript
|
||||
var climbStairs = function (n) {
|
||||
let dp = new Array(n + 1).fill(0);
|
||||
dp[0] = 1;
|
||||
// 排列题,注意循环顺序,背包在外物品在内
|
||||
for (let j = 1; j <= n; j++) {//遍历背包
|
||||
for (let i = 1; i <= 2; i++) {//遍历物品
|
||||
if (j - i >= 0) dp[j] = dp[j] + dp[j - i];
|
||||
}
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
### TypeScript:
|
||||
|
||||
```typescript
|
||||
var climbStairs = function (n: number): number {
|
||||
let dp: number[] = new Array(n + 1).fill(0);
|
||||
dp[0] = 1;
|
||||
for (let j = 1; j <= n; j++) {//遍历背包
|
||||
for (let i = 1; i <= 2; i++) {//遍历物品
|
||||
if (j - i >= 0) dp[j] = dp[j] + dp[j - i];
|
||||
}
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
### Rust:
|
||||
|
||||
|
@ -469,28 +469,58 @@ func dfs(n int, k int, start int) {
|
||||
```
|
||||
|
||||
### Javascript
|
||||
未剪枝:
|
||||
|
||||
```js
|
||||
var combine = function (n, k) {
|
||||
// 回溯法
|
||||
let result = [],
|
||||
path = [];
|
||||
let backtracking = (_n, _k, startIndex) => {
|
||||
// 终止条件
|
||||
if (path.length === _k) {
|
||||
result.push(path.slice());
|
||||
return;
|
||||
}
|
||||
// 循环本层集合元素
|
||||
for (let i = startIndex; i <= _n; i++) {
|
||||
path.push(i);
|
||||
// 递归
|
||||
backtracking(_n, _k, i + 1);
|
||||
// 回溯操作
|
||||
path.pop();
|
||||
}
|
||||
};
|
||||
backtracking(n, k, 1);
|
||||
return result;
|
||||
};
|
||||
```
|
||||
|
||||
剪枝:
|
||||
|
||||
```javascript
|
||||
let result = []
|
||||
let path = []
|
||||
var combine = function (n, k) {
|
||||
result = []
|
||||
combineHelper(n, k, 1)
|
||||
return result
|
||||
// 回溯法
|
||||
let result = [],
|
||||
path = [];
|
||||
let backtracking = (_n, _k, startIndex) => {
|
||||
// 终止条件
|
||||
if (path.length === _k) {
|
||||
result.push(path.slice());
|
||||
return;
|
||||
}
|
||||
// 循环本层集合元素
|
||||
for (let i = startIndex; i <= _n - (_k - path.length) + 1; i++) {
|
||||
path.push(i);
|
||||
// 递归
|
||||
backtracking(_n, _k, i + 1);
|
||||
// 回溯操作
|
||||
path.pop();
|
||||
}
|
||||
};
|
||||
backtracking(n, k, 1);
|
||||
return result;
|
||||
};
|
||||
const combineHelper = (n, k, startIndex) => {
|
||||
if (path.length === k) {
|
||||
result.push([...path])
|
||||
return
|
||||
}
|
||||
for (let i = startIndex; i <= n - (k - path.length) + 1; ++i) {
|
||||
path.push(i)
|
||||
combineHelper(n, k, i + 1)
|
||||
path.pop()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### TypeScript
|
||||
|
@ -129,7 +129,7 @@ class Solution {
|
||||
return resList;
|
||||
}
|
||||
|
||||
//DFS--递归方式
|
||||
//BFS--递归方式
|
||||
public void checkFun01(TreeNode node, Integer deep) {
|
||||
if (node == null) return;
|
||||
deep++;
|
||||
@ -693,7 +693,8 @@ func levelOrderBottom(root *TreeNode) [][]int {
|
||||
|
||||
```javascript
|
||||
var levelOrderBottom = function (root) {
|
||||
let res = [], queue = [];
|
||||
let res = [],
|
||||
queue = [];
|
||||
queue.push(root);
|
||||
while (queue.length && root !== null) {
|
||||
// 存放当前层级节点数组
|
||||
@ -713,6 +714,7 @@ var levelOrderBottom = function(root) {
|
||||
}
|
||||
return res;
|
||||
};
|
||||
|
||||
```
|
||||
|
||||
#### TypeScript:
|
||||
@ -1140,7 +1142,7 @@ impl Solution {
|
||||
|
||||
### 思路
|
||||
|
||||
本题就是层序遍历的时候把一层求个总和在取一个均值。
|
||||
本题就是层序遍历的时候把一层求个总和再取一个均值。
|
||||
|
||||
C++代码:
|
||||
|
||||
@ -1295,25 +1297,25 @@ func averageOfLevels(root *TreeNode) []float64 {
|
||||
|
||||
```javascript
|
||||
var averageOfLevels = function(root) {
|
||||
//层级平均值
|
||||
let res = [], queue = [];
|
||||
let res = [],
|
||||
queue = [];
|
||||
queue.push(root);
|
||||
|
||||
while(queue.length && root!==null) {
|
||||
//每一层节点个数
|
||||
let length = queue.length;
|
||||
//sum记录每一层的和
|
||||
let sum = 0;
|
||||
for(let i=0; i < length; i++) {
|
||||
let node = queue.shift();
|
||||
while (queue.length) {
|
||||
// 每一层节点个数;
|
||||
let lengthLevel = queue.length,
|
||||
len = queue.length,
|
||||
// sum记录每一层的和;
|
||||
sum = 0;
|
||||
while (lengthLevel--) {
|
||||
const node = queue.shift();
|
||||
sum += node.val;
|
||||
// 队列存放下一层节点
|
||||
node.left && queue.push(node.left);
|
||||
node.right && queue.push(node.right);
|
||||
}
|
||||
//每一层的平均值存入数组res
|
||||
res.push(sum/length);
|
||||
// 求平均值
|
||||
res.push(sum / len);
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
```
|
||||
@ -1926,24 +1928,26 @@ func max(x, y int) int {
|
||||
|
||||
```javascript
|
||||
var largestValues = function (root) {
|
||||
//使用层序遍历
|
||||
let res = [], queue = [];
|
||||
let res = [],
|
||||
queue = [];
|
||||
queue.push(root);
|
||||
|
||||
while(root !== null && queue.length) {
|
||||
//设置max初始值就是队列的第一个元素
|
||||
let max = queue[0].val;
|
||||
let length = queue.length;
|
||||
while(length--) {
|
||||
let node = queue.shift();
|
||||
max = max > node.val ? max : node.val;
|
||||
if (root === null) {
|
||||
return res;
|
||||
}
|
||||
while (queue.length) {
|
||||
let lengthLevel = queue.length,
|
||||
// 初始值设为负无穷大
|
||||
max = -Infinity;
|
||||
while (lengthLevel--) {
|
||||
const node = queue.shift();
|
||||
// 在当前层中找到最大值
|
||||
max = Math.max(max, node.val);
|
||||
// 找到下一层的节点
|
||||
node.left && queue.push(node.left);
|
||||
node.right && queue.push(node.right);
|
||||
}
|
||||
//把每一层的最大值放到res数组
|
||||
res.push(max);
|
||||
}
|
||||
|
||||
return res;
|
||||
};
|
||||
```
|
||||
@ -2806,20 +2810,22 @@ func maxDepth(root *TreeNode) int {
|
||||
* @return {number}
|
||||
*/
|
||||
var maxDepth = function (root) {
|
||||
// 最大的深度就是二叉树的层数
|
||||
if (root === null) return 0;
|
||||
let queue = [root];
|
||||
let height = 0;
|
||||
// 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
|
||||
let max = 0,
|
||||
queue = [root];
|
||||
if (root === null) {
|
||||
return max;
|
||||
}
|
||||
while (queue.length) {
|
||||
let n = queue.length;
|
||||
height++;
|
||||
for (let i=0; i<n; i++) {
|
||||
max++;
|
||||
let length = queue.length;
|
||||
while (length--) {
|
||||
let node = queue.shift();
|
||||
node.left && queue.push(node.left);
|
||||
node.right && queue.push(node.right);
|
||||
}
|
||||
}
|
||||
return height;
|
||||
return max;
|
||||
};
|
||||
```
|
||||
|
||||
|
@ -64,7 +64,7 @@
|
||||
|
||||
代码如下:
|
||||
|
||||
```
|
||||
```CPP
|
||||
int getDepth(TreeNode* node)
|
||||
```
|
||||
|
||||
@ -74,14 +74,14 @@ int getDepth(TreeNode* node)
|
||||
|
||||
代码如下:
|
||||
|
||||
```
|
||||
```CPP
|
||||
if (node == NULL) return 0;
|
||||
```
|
||||
|
||||
3. 确定单层递归的逻辑
|
||||
|
||||
这块和求最大深度可就不一样了,一些同学可能会写如下代码:
|
||||
```
|
||||
```CPP
|
||||
int leftDepth = getDepth(node->left);
|
||||
int rightDepth = getDepth(node->right);
|
||||
int result = 1 + min(leftDepth, rightDepth);
|
||||
|
@ -394,7 +394,28 @@ class Solution:
|
||||
dp[j] = dp[j] or (dp[j - len(word)] and word == s[j - len(word):j])
|
||||
return dp[len(s)]
|
||||
```
|
||||
DP(剪枝)
|
||||
|
||||
```python
|
||||
class Solution(object):
|
||||
def wordBreak(self, s, wordDict):
|
||||
|
||||
# 先对单词按长度排序
|
||||
wordDict.sort(key=lambda x: len(x))
|
||||
n = len(s)
|
||||
dp = [False] * (n + 1)
|
||||
dp[0] = True
|
||||
# 遍历背包
|
||||
for i in range(1, n + 1):
|
||||
# 遍历单词
|
||||
for word in wordDict:
|
||||
# 简单的 “剪枝”
|
||||
if len(word) > i:
|
||||
break
|
||||
dp[i] = dp[i] or (dp[i - len(word)] and s[i - len(word): i] == word)
|
||||
return dp[-1]
|
||||
|
||||
```
|
||||
|
||||
|
||||
### Go:
|
||||
|
@ -169,8 +169,12 @@ class Solution {
|
||||
```python
|
||||
from operator import add, sub, mul
|
||||
|
||||
class Solution:
|
||||
op_map = {'+': add, '-': sub, '*': mul, '/': lambda x, y: int(x / y)}
|
||||
def div(x, y):
|
||||
# 使用整数除法的向零取整方式
|
||||
return int(x / y) if x * y > 0 else -(abs(x) // abs(y))
|
||||
|
||||
class Solution(object):
|
||||
op_map = {'+': add, '-': sub, '*': mul, '/': div}
|
||||
|
||||
def evalRPN(self, tokens: List[str]) -> int:
|
||||
stack = []
|
||||
@ -186,18 +190,31 @@ class Solution:
|
||||
|
||||
另一种可行,但因为使用eval相对较慢的方法:
|
||||
```python
|
||||
class Solution:
|
||||
def evalRPN(self, tokens: List[str]) -> int:
|
||||
from operator import add, sub, mul
|
||||
|
||||
def div(x, y):
|
||||
# 使用整数除法的向零取整方式
|
||||
return int(x / y) if x * y > 0 else -(abs(x) // abs(y))
|
||||
|
||||
class Solution(object):
|
||||
op_map = {'+': add, '-': sub, '*': mul, '/': div}
|
||||
|
||||
def evalRPN(self, tokens):
|
||||
"""
|
||||
:type tokens: List[str]
|
||||
:rtype: int
|
||||
"""
|
||||
stack = []
|
||||
for item in tokens:
|
||||
if item not in {"+", "-", "*", "/"}:
|
||||
stack.append(item)
|
||||
for token in tokens:
|
||||
if token in self.op_map:
|
||||
op1 = stack.pop()
|
||||
op2 = stack.pop()
|
||||
operation = self.op_map[token]
|
||||
stack.append(operation(op2, op1))
|
||||
else:
|
||||
first_num, second_num = stack.pop(), stack.pop()
|
||||
stack.append(
|
||||
int(eval(f'{second_num} {item} {first_num}')) # 第一个出来的在运算符后面
|
||||
)
|
||||
return int(stack.pop()) # 如果一开始只有一个数,那么会是字符串形式的
|
||||
stack.append(int(token))
|
||||
return stack.pop()
|
||||
|
||||
|
||||
```
|
||||
|
||||
|
@ -585,7 +585,7 @@ impl Solution {
|
||||
let mut dummyHead = Box::new(ListNode::new(0));
|
||||
dummyHead.next = head;
|
||||
let mut cur = dummyHead.as_mut();
|
||||
// 使用take()替换std::men::replace(&mut node.next, None)达到相同的效果,并且更普遍易读
|
||||
// 使用take()替换std::mem::replace(&mut node.next, None)达到相同的效果,并且更普遍易读
|
||||
while let Some(nxt) = cur.next.take() {
|
||||
if nxt.val == val {
|
||||
cur.next = nxt.next;
|
||||
|
@ -270,22 +270,21 @@ var minSubArrayLen = function(target, nums) {
|
||||
|
||||
```typescript
|
||||
function minSubArrayLen(target: number, nums: number[]): number {
|
||||
let left: number = 0, right: number = 0;
|
||||
let res: number = nums.length + 1;
|
||||
let sum: number = 0;
|
||||
while (right < nums.length) {
|
||||
let left: number = 0,
|
||||
res: number = Infinity,
|
||||
subLen: number = 0,
|
||||
sum: number = 0;
|
||||
for (let right: number = 0; right < nums.length; right++) {
|
||||
sum += nums[right];
|
||||
if (sum >= target) {
|
||||
// 不断移动左指针,直到不能再缩小为止
|
||||
while (sum - nums[left] >= target) {
|
||||
sum -= nums[left++];
|
||||
while (sum >= target) {
|
||||
subLen = right - left + 1;
|
||||
res = Math.min(res, subLen);
|
||||
sum -= nums[left];
|
||||
left++;
|
||||
}
|
||||
res = Math.min(res, right - left + 1);
|
||||
}
|
||||
right++;
|
||||
return res === Infinity ? 0 : res;
|
||||
}
|
||||
return res === nums.length + 1 ? 0 : res;
|
||||
};
|
||||
```
|
||||
|
||||
### Swift:
|
||||
|
@ -417,6 +417,7 @@ func dfs(k, n int, start int, sum int) {
|
||||
```
|
||||
|
||||
### JavaScript
|
||||
- 未剪枝:
|
||||
|
||||
```js
|
||||
/**
|
||||
@ -425,31 +426,73 @@ func dfs(k, n int, start int, sum int) {
|
||||
* @return {number[][]}
|
||||
*/
|
||||
var combinationSum3 = function (k, n) {
|
||||
let res = [];
|
||||
let path = [];
|
||||
let sum = 0;
|
||||
const dfs = (path,index) => {
|
||||
// 剪枝操作
|
||||
if (sum > n){
|
||||
return
|
||||
// 回溯法
|
||||
let result = [],
|
||||
path = [];
|
||||
const backtracking = (_k, targetSum, sum, startIndex) => {
|
||||
// 终止条件
|
||||
if (path.length === _k) {
|
||||
if (sum === targetSum) {
|
||||
result.push(path.slice());
|
||||
}
|
||||
if (path.length == k) {
|
||||
if(sum == n){
|
||||
res.push([...path]);
|
||||
return
|
||||
// 如果总和不相等,就直接返回
|
||||
return;
|
||||
}
|
||||
}
|
||||
for (let i = index; i <= 9 - (k-path.length) + 1;i++) {
|
||||
|
||||
// 循环当前节点,因为只使用数字1到9,所以最大是9
|
||||
for (let i = startIndex; i <= 9; i++) {
|
||||
path.push(i);
|
||||
sum = sum + i;
|
||||
index += 1;
|
||||
dfs(path,index);
|
||||
sum -= i
|
||||
path.pop()
|
||||
sum += i;
|
||||
// 回调函数
|
||||
backtracking(_k, targetSum, sum, i + 1);
|
||||
// 回溯
|
||||
sum -= i;
|
||||
path.pop();
|
||||
}
|
||||
};
|
||||
backtracking(k, n, 0, 1);
|
||||
return result;
|
||||
};
|
||||
```
|
||||
|
||||
- 剪枝:
|
||||
|
||||
```js
|
||||
/**
|
||||
* @param {number} k
|
||||
* @param {number} n
|
||||
* @return {number[][]}
|
||||
*/
|
||||
var combinationSum3 = function (k, n) {
|
||||
// 回溯法
|
||||
let result = [],
|
||||
path = [];
|
||||
const backtracking = (_k, targetSum, sum, startIndex) => {
|
||||
if (sum > targetSum) {
|
||||
return;
|
||||
}
|
||||
dfs(path,1);
|
||||
return res
|
||||
// 终止条件
|
||||
if (path.length === _k) {
|
||||
if (sum === targetSum) {
|
||||
result.push(path.slice());
|
||||
}
|
||||
// 如果总和不相等,就直接返回
|
||||
return;
|
||||
}
|
||||
|
||||
// 循环当前节点,因为只使用数字1到9,所以最大是9
|
||||
for (let i = startIndex; i <= 9 - (_k - path.length) + 1; i++) {
|
||||
path.push(i);
|
||||
sum += i;
|
||||
// 回调函数
|
||||
backtracking(_k, targetSum, sum, i + 1);
|
||||
// 回溯
|
||||
sum -= i;
|
||||
path.pop();
|
||||
}
|
||||
};
|
||||
backtracking(k, n, 0, 1);
|
||||
return result;
|
||||
};
|
||||
```
|
||||
|
||||
|
@ -54,7 +54,7 @@
|
||||
1. 确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。
|
||||
|
||||
代码如下:
|
||||
```
|
||||
```CPP
|
||||
int getNodesNum(TreeNode* cur) {
|
||||
```
|
||||
|
||||
@ -62,7 +62,7 @@ int getNodesNum(TreeNode* cur) {
|
||||
|
||||
代码如下:
|
||||
|
||||
```
|
||||
```CPP
|
||||
if (cur == NULL) return 0;
|
||||
```
|
||||
|
||||
@ -70,7 +70,7 @@ if (cur == NULL) return 0;
|
||||
|
||||
代码如下:
|
||||
|
||||
```
|
||||
```CPP
|
||||
int leftNum = getNodesNum(cur->left); // 左
|
||||
int rightNum = getNodesNum(cur->right); // 右
|
||||
int treeNum = leftNum + rightNum + 1; // 中
|
||||
|
@ -247,7 +247,7 @@ public:
|
||||
|
||||
|
||||
### Java
|
||||
|
||||
递归
|
||||
```Java
|
||||
class Solution {
|
||||
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
|
||||
@ -271,6 +271,47 @@ class Solution {
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
迭代
|
||||
```Java
|
||||
class Solution {
|
||||
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
|
||||
int max = Integer.MAX_VALUE;
|
||||
Stack<TreeNode> st = new Stack<>();
|
||||
TreeNode cur = root, pre = null;
|
||||
while (cur != null || !st.isEmpty()) {
|
||||
while (cur != null) {
|
||||
st.push(cur);
|
||||
cur = cur.left;
|
||||
}
|
||||
cur = st.pop();
|
||||
if (cur.right == null || cur.right == pre) {
|
||||
// p/q是 中/左 或者 中/右 , 返回中
|
||||
if (cur == p || cur == q) {
|
||||
if ((cur.left != null && cur.left.val == max) || (cur.right != null && cur.right.val == max)) {
|
||||
return cur;
|
||||
}
|
||||
cur.val = max;
|
||||
}
|
||||
// p/q是 左/右 , 返回中
|
||||
if (cur.left != null && cur.left.val == max && cur.right != null && cur.right.val == max) {
|
||||
return cur;
|
||||
}
|
||||
// MAX_VALUE 往上传递
|
||||
if ((cur.left != null && cur.left.val == max) || (cur.right != null && cur.right.val == max)) {
|
||||
cur.val = max;
|
||||
}
|
||||
pre = cur;
|
||||
cur = null;
|
||||
} else {
|
||||
st.push(cur);
|
||||
cur = cur.right;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
### Python
|
||||
|
@ -271,6 +271,26 @@ class Solution:
|
||||
# 返回结果
|
||||
return dp[n]
|
||||
|
||||
```
|
||||
```python
|
||||
class Solution(object):
|
||||
def numSquares(self, n):
|
||||
# 先把可以选的数准备好,更好理解
|
||||
nums, num = [], 1
|
||||
while num ** 2 <= n:
|
||||
nums.append(num ** 2)
|
||||
num += 1
|
||||
# dp数组初始化
|
||||
dp = [float('inf')] * (n + 1)
|
||||
dp[0] = 0
|
||||
|
||||
# 遍历准备好的完全平方数
|
||||
for i in range(len(nums)):
|
||||
# 遍历背包容量
|
||||
for j in range(nums[i], n+1):
|
||||
dp[j] = min(dp[j], dp[j-nums[i]]+1)
|
||||
# 返回结果
|
||||
return dp[-1]
|
||||
|
||||
|
||||
```
|
||||
|
@ -129,6 +129,7 @@ public:
|
||||
```Java
|
||||
class Solution {
|
||||
public int lengthOfLIS(int[] nums) {
|
||||
if (nums.length <= 1) return nums.length;
|
||||
int[] dp = new int[nums.length];
|
||||
int res = 1;
|
||||
Arrays.fill(dp, 1);
|
||||
@ -137,8 +138,8 @@ class Solution {
|
||||
if (nums[i] > nums[j]) {
|
||||
dp[i] = Math.max(dp[i], dp[j] + 1);
|
||||
}
|
||||
res = Math.max(res, dp[i]);
|
||||
}
|
||||
res = Math.max(res, dp[i]);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
@ -133,7 +133,7 @@ class Solution {
|
||||
record[c - 'a'] -= 1;
|
||||
}
|
||||
|
||||
// 如果数组中存在负数,说明ransomNote字符串总存在magazine中没有的字符
|
||||
// 如果数组中存在负数,说明ransomNote字符串中存在magazine中没有的字符
|
||||
for(int i : record){
|
||||
if(i < 0){
|
||||
return false;
|
||||
|
@ -101,7 +101,7 @@ public:
|
||||
int sum = 0;
|
||||
for (int i = 0; i < nums.size(); i++) sum += nums[i];
|
||||
if (S > sum) return 0; // 此时没有方案
|
||||
if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题
|
||||
if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要格外小心数值溢出的问题
|
||||
int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和
|
||||
|
||||
// 以下为回溯法代码
|
||||
|
@ -234,6 +234,25 @@ class Solution:
|
||||
return dp[-1][-1]
|
||||
```
|
||||
|
||||
> 版本 2
|
||||
|
||||
```python
|
||||
class Solution(object):
|
||||
def minDistance(self, word1, word2):
|
||||
m, n = len(word1), len(word2)
|
||||
|
||||
# dp 求解两字符串最长公共子序列
|
||||
dp = [[0] * (n+1) for _ in range(m+1)]
|
||||
for i in range(1, m+1):
|
||||
for j in range(1, n+1):
|
||||
if word1[i-1] == word2[j-1]:
|
||||
dp[i][j] = dp[i-1][j-1] + 1
|
||||
else:
|
||||
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
|
||||
|
||||
# 删去最长公共子序列以外元素
|
||||
return m + n - 2 * dp[-1][-1]
|
||||
```
|
||||
### Go:
|
||||
|
||||
```go
|
||||
|
@ -501,19 +501,19 @@ func search(nums: [Int], target: Int) -> Int {
|
||||
|
||||
### **Rust:**
|
||||
|
||||
(版本一)左闭右开区间
|
||||
(版本一)左闭右闭区间
|
||||
|
||||
```rust
|
||||
use std::cmp::Ordering;
|
||||
impl Solution {
|
||||
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
|
||||
let (mut left, mut right) = (0, nums.len());
|
||||
while left < right {
|
||||
let (mut left, mut right) = (0_i32, nums.len() as i32 - 1);
|
||||
while left <= right {
|
||||
let mid = (right + left) / 2;
|
||||
match nums[mid].cmp(&target) {
|
||||
match nums[mid as usize].cmp(&target) {
|
||||
Ordering::Less => left = mid + 1,
|
||||
Ordering::Greater => right = mid,
|
||||
Ordering::Equal => return mid as i32,
|
||||
Ordering::Greater => right = mid - 1,
|
||||
Ordering::Equal => return mid,
|
||||
}
|
||||
}
|
||||
-1
|
||||
@ -521,19 +521,19 @@ impl Solution {
|
||||
}
|
||||
```
|
||||
|
||||
//(版本二)左闭右闭区间
|
||||
//(版本二)左闭右开区间
|
||||
|
||||
```rust
|
||||
use std::cmp::Ordering;
|
||||
impl Solution {
|
||||
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
|
||||
let (mut left, mut right) = (0, nums.len());
|
||||
while left <= right {
|
||||
let (mut left, mut right) = (0_i32, nums.len() as i32);
|
||||
while left < right {
|
||||
let mid = (right + left) / 2;
|
||||
match nums[mid].cmp(&target) {
|
||||
match nums[mid as usize].cmp(&target) {
|
||||
Ordering::Less => left = mid + 1,
|
||||
Ordering::Greater => right = mid - 1,
|
||||
Ordering::Equal => return mid as i32,
|
||||
Ordering::Greater => right = mid,
|
||||
Ordering::Equal => return mid,
|
||||
}
|
||||
}
|
||||
-1
|
||||
|
@ -181,6 +181,17 @@ class Solution:
|
||||
### Go:
|
||||
|
||||
```Go
|
||||
// 排序法
|
||||
func sortedSquares(nums []int) []int {
|
||||
for i, val := range nums {
|
||||
nums[i] *= val
|
||||
}
|
||||
sort.Ints(nums)
|
||||
return nums
|
||||
}
|
||||
```
|
||||
```Go
|
||||
// 双指针法
|
||||
func sortedSquares(nums []int) []int {
|
||||
n := len(nums)
|
||||
i, j, k := 0, n-1, n-1
|
||||
|
@ -71,7 +71,7 @@
|
||||
|
||||
有递归的地方就有回溯,那么回溯在哪里呢?
|
||||
|
||||
就地递归函数的下面,例如如下代码:
|
||||
就递归函数的下面,例如如下代码:
|
||||
|
||||
```cpp
|
||||
void dfs(参数) {
|
||||
|
@ -48,7 +48,7 @@ void traversal(TreeNode* cur, vector<int>& vec)
|
||||
if (cur == NULL) return;
|
||||
```
|
||||
|
||||
3. **确定单层递归的逻辑**:前序遍历是中左右的循序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:
|
||||
3. **确定单层递归的逻辑**:前序遍历是中左右的顺序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:
|
||||
|
||||
```cpp
|
||||
vec.push_back(cur->val); // 中
|
||||
@ -189,7 +189,7 @@ class Solution:
|
||||
res.append(node.val)
|
||||
dfs(node.left)
|
||||
dfs(node.right)
|
||||
|
||||
dfs(root)
|
||||
return res
|
||||
|
||||
```
|
||||
@ -206,7 +206,7 @@ class Solution:
|
||||
dfs(node.left)
|
||||
res.append(node.val)
|
||||
dfs(node.right)
|
||||
|
||||
dfs(root)
|
||||
return res
|
||||
```
|
||||
```python
|
||||
@ -225,6 +225,7 @@ class Solution:
|
||||
dfs(node.right)
|
||||
res.append(node.val)
|
||||
|
||||
dfs(root)
|
||||
return res
|
||||
```
|
||||
|
||||
@ -287,52 +288,91 @@ func postorderTraversal(root *TreeNode) (res []int) {
|
||||
前序遍历:
|
||||
```Javascript
|
||||
var preorderTraversal = function(root) {
|
||||
let res=[];
|
||||
const dfs=function(root){
|
||||
if(root===null)return ;
|
||||
//先序遍历所以从父节点开始
|
||||
res.push(root.val);
|
||||
// 第一种
|
||||
// let res=[];
|
||||
// const dfs=function(root){
|
||||
// if(root===null)return ;
|
||||
// //先序遍历所以从父节点开始
|
||||
// res.push(root.val);
|
||||
// //递归左子树
|
||||
// dfs(root.left);
|
||||
// //递归右子树
|
||||
// dfs(root.right);
|
||||
// }
|
||||
// //只使用一个参数 使用闭包进行存储结果
|
||||
// dfs(root);
|
||||
// return res;
|
||||
// 第二种
|
||||
return root
|
||||
? [
|
||||
// 前序遍历:中左右
|
||||
root.val,
|
||||
// 递归左子树
|
||||
dfs(root.left);
|
||||
...preorderTraversal(root.left),
|
||||
// 递归右子树
|
||||
dfs(root.right);
|
||||
}
|
||||
//只使用一个参数 使用闭包进行存储结果
|
||||
dfs(root);
|
||||
return res;
|
||||
...preorderTraversal(root.right),
|
||||
]
|
||||
: [];
|
||||
};
|
||||
```
|
||||
中序遍历
|
||||
```javascript
|
||||
var inorderTraversal = function(root) {
|
||||
let res=[];
|
||||
const dfs=function(root){
|
||||
if(root===null){
|
||||
return ;
|
||||
}
|
||||
dfs(root.left);
|
||||
res.push(root.val);
|
||||
dfs(root.right);
|
||||
}
|
||||
dfs(root);
|
||||
return res;
|
||||
// 第一种
|
||||
|
||||
// let res=[];
|
||||
// const dfs=function(root){
|
||||
// if(root===null){
|
||||
// return ;
|
||||
// }
|
||||
// dfs(root.left);
|
||||
// res.push(root.val);
|
||||
// dfs(root.right);
|
||||
// }
|
||||
// dfs(root);
|
||||
// return res;
|
||||
|
||||
// 第二种
|
||||
return root
|
||||
? [
|
||||
// 中序遍历:左中右
|
||||
// 递归左子树
|
||||
...inorderTraversal(root.left),
|
||||
root.val,
|
||||
// 递归右子树
|
||||
...inorderTraversal(root.right),
|
||||
]
|
||||
: [];
|
||||
};
|
||||
```
|
||||
|
||||
后序遍历
|
||||
```javascript
|
||||
var postorderTraversal = function(root) {
|
||||
let res=[];
|
||||
const dfs=function(root){
|
||||
if(root===null){
|
||||
return ;
|
||||
}
|
||||
dfs(root.left);
|
||||
dfs(root.right);
|
||||
res.push(root.val);
|
||||
}
|
||||
dfs(root);
|
||||
return res;
|
||||
// 第一种
|
||||
// let res=[];
|
||||
// const dfs=function(root){
|
||||
// if(root===null){
|
||||
// return ;
|
||||
// }
|
||||
// dfs(root.left);
|
||||
// dfs(root.right);
|
||||
// res.push(root.val);
|
||||
// }
|
||||
// dfs(root);
|
||||
// return res;
|
||||
|
||||
// 第二种
|
||||
// 后续遍历:左右中
|
||||
return root
|
||||
? [
|
||||
// 递归左子树
|
||||
...postorderTraversal(root.left),
|
||||
// 递归右子树
|
||||
...postorderTraversal(root.right),
|
||||
root.val,
|
||||
]
|
||||
: [];
|
||||
};
|
||||
```
|
||||
|
||||
|
@ -19,7 +19,7 @@
|
||||
|
||||
**时间复杂度是一个函数,它定性描述该算法的运行时间**。
|
||||
|
||||
我们在软件开发中,时间复杂度就是用来方便开发者估算出程序运行的答题时间。
|
||||
我们在软件开发中,时间复杂度就是用来方便开发者估算出程序运行的大体时间。
|
||||
|
||||
那么该如何估计程序运行时间呢,通常会估算算法的操作单元数量来代表程序消耗的时间,这里默认CPU的每个单元运行消耗的时间都是相同的。
|
||||
|
||||
@ -42,7 +42,7 @@
|
||||
|
||||
我们主要关心的还是一般情况下的数据形式。
|
||||
|
||||
**面试中说道算法的时间复杂度是多少指的都是一般情况**。但是如果面试官和我们深入探讨一个算法的实现以及性能的时候,就要时刻想着数据用例的不一样,时间复杂度也是不同的,这一点是一定要注意的。
|
||||
**面试中说的算法的时间复杂度是多少指的都是一般情况**。但是如果面试官和我们深入探讨一个算法的实现以及性能的时候,就要时刻想着数据用例的不一样,时间复杂度也是不同的,这一点是一定要注意的。
|
||||
|
||||
|
||||
## 不同数据规模的差异
|
||||
@ -61,7 +61,7 @@
|
||||
|
||||
例如上图中20就是那个点,n只要大于20 常数项系数已经不起决定性作用了。
|
||||
|
||||
**所以我们说的时间复杂度都是省略常数项系数的,是因为一般情况下都是默认数据规模足够的大,基于这样的事实,给出的算法时间复杂的的一个排行如下所示**:
|
||||
**所以我们说的时间复杂度都是省略常数项系数的,是因为一般情况下都是默认数据规模足够的大,基于这样的事实,给出的算法时间复杂度的一个排行如下所示**:
|
||||
|
||||
O(1)常数阶 < O(logn)对数阶 < O(n)线性阶 < O(nlogn)线性对数阶 < O(n^2)平方阶 < O(n^3)立方阶 < O(2^n)指数阶
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
|
||||
> 哈希表是根据关键码的值而直接进行访问的数据结构。
|
||||
|
||||
这么这官方的解释可能有点懵,其实直白来讲其实数组就是一张哈希表。
|
||||
这么官方的解释可能有点懵,其实直白来讲其实数组就是一张哈希表。
|
||||
|
||||
哈希表中关键码就是数组的索引下标,然后通过下标直接访问数组中的元素,如下图所示:
|
||||
|
||||
@ -113,7 +113,7 @@ std::unordered_map 底层实现为哈希表,std::map 和std::multimap 的底
|
||||
|
||||
其他语言例如:java里的HashMap ,TreeMap 都是一样的原理。可以灵活贯通。
|
||||
|
||||
虽然std::set、std::multiset 的底层实现是红黑树,不是哈希表,std::set、std::multiset 使用红黑树来索引和存储,不过给我们的使用方式,还是哈希法的使用方式,即key和value。所以使用这些数据结构来解决映射问题的方法,我们依然称之为哈希法。 map也是一样的道理。
|
||||
虽然std::set和std::multiset 的底层实现基于红黑树而非哈希表,它们通过红黑树来索引和存储数据。不过给我们的使用方式,还是哈希法的使用方式,即依靠键(key)来访问值(value)。所以使用这些数据结构来解决映射问题的方法,我们依然称之为哈希法。std::map也是一样的道理。
|
||||
|
||||
这里在说一下,一些C++的经典书籍上 例如STL源码剖析,说到了hash_set hash_map,这个与unordered_set,unordered_map又有什么关系呢?
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
|
||||
**数组是存放在连续内存空间上的相同类型数据的集合。**
|
||||
|
||||
数组可以方便的通过下标索引的方式获取到下标下对应的数据。
|
||||
数组可以方便的通过下标索引的方式获取到下标对应的数据。
|
||||
|
||||
举一个字符数组的例子,如图所示:
|
||||
|
||||
@ -27,7 +27,7 @@
|
||||
* **数组下标都是从0开始的。**
|
||||
* **数组内存空间的地址是连续的**
|
||||
|
||||
正是**因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。**
|
||||
正是**因为数组在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。**
|
||||
|
||||
例如删除下标为3的元素,需要对下标为3的元素后面的所有元素都要做移动操作,如图所示:
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
|
||||
**数组是存放在连续内存空间上的相同类型数据的集合。**
|
||||
|
||||
数组可以方便的通过下标索引的方式获取到下标下对应的数据。
|
||||
数组可以方便的通过下标索引的方式获取到下标对应的数据。
|
||||
|
||||
举一个字符数组的例子,如图所示:
|
||||
|
||||
@ -29,7 +29,7 @@
|
||||
* **数组下标都是从0开始的。**
|
||||
* **数组内存空间的地址是连续的**
|
||||
|
||||
正是**因为数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。**
|
||||
正是**因为数组在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要移动其他元素的地址。**
|
||||
|
||||
例如删除下标为3的元素,需要对下标为3的元素后面的所有元素都要做移动操作,如图所示:
|
||||
|
||||
|
@ -204,6 +204,29 @@ class multi_pack{
|
||||
```
|
||||
### Python:
|
||||
|
||||
```python
|
||||
|
||||
C, N = input().split(" ")
|
||||
C, N = int(C), int(N)
|
||||
|
||||
# value数组需要判断一下非空不然过不了
|
||||
weights = [int(x) for x in input().split(" ")]
|
||||
values = [int(x) for x in input().split(" ") if x]
|
||||
nums = [int(x) for x in input().split(" ")]
|
||||
|
||||
dp = [0] * (C + 1)
|
||||
# 遍历背包容量
|
||||
for i in range(N):
|
||||
for j in range(C, weights[i] - 1, -1):
|
||||
for k in range(1, nums[i] + 1):
|
||||
# 遍历 k,如果已经大于背包容量直接跳出循环
|
||||
if k * weights[i] > j:
|
||||
break
|
||||
dp[j] = max(dp[j], dp[j - weights[i] * k] + values[i] * k)
|
||||
print(dp[-1])
|
||||
|
||||
```
|
||||
|
||||
### Go:
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user