Merge branch 'master' of github.com:youngyangyang04/leetcode-master

This commit is contained in:
youngyangyang04
2021-11-21 16:20:18 +08:00
19 changed files with 501 additions and 9 deletions

View File

@ -263,6 +263,32 @@ public:
## Java
```java
// 双指针 中心扩散法
class Solution {
public String longestPalindrome(String s) {
String s1 = "";
String s2 = "";
String res = "";
for (int i = 0; i < s.length(); i++) {
// 分两种情况:即一个元素作为中心点,两个元素作为中心点
s1 = extend(s, i, i); // 情况1
res = s1.length() > res.length() ? s1 : res;
s2 = extend(s, i, i + 1); // 情况2
res = s2.length() > res.length() ? s2 : res;
}
return res; // 返回最长的
}
public String extend(String s, int start, int end){
String tmp = "";
while (start >= 0 && end < s.length() && s.charAt(start) == s.charAt(end)){
tmp = s.substring(start, end + 1); // Java中substring是左闭右开的所以要+1
// 向两边扩散
start--;
end++;
}
return tmp;
}
}
```
## Python
@ -317,6 +343,7 @@ class Solution:
## Go
```go
```
## JavaScript

View File

@ -118,7 +118,7 @@ next数组就是一个前缀表prefix table
此时就要问了**前缀表是如何记录的呢?**
首先要知道前缀表的任务是当前位置匹配失败,找到之前已经匹配上的位置,重新匹配,此也意味着在某个字符失配时,前缀表会告诉你下一步匹配中,模式串应该跳到哪个位置。
首先要知道前缀表的任务是当前位置匹配失败,找到之前已经匹配上的位置,重新匹配,此也意味着在某个字符失配时,前缀表会告诉你下一步匹配中,模式串应该跳到哪个位置。
那么什么是前缀表:**记录下标i之前包括i的字符串中有多大长度的相同前缀后缀。**
@ -146,7 +146,7 @@ next数组就是一个前缀表prefix table
# 为什么一定要用前缀表
这就是前缀表那为啥就能告诉我们 上次匹配的位置,并跳过去呢?
这就是前缀表那为啥就能告诉我们 上次匹配的位置,并跳过去呢?
回顾一下刚刚匹配的过程在下标5的地方遇到不匹配模式串是指向f如图
<img src='https://code-thinking.cdn.bcebos.com/pics/KMP%E7%B2%BE%E8%AE%B21.png' width=600 alt='KMP精讲1'> </img></div>

View File

@ -163,6 +163,29 @@ class Solution:
low += 1
high -= 1
```
>上一版本简化版
'''python
class Solution(object):
def nextPermutation(self, nums: List[int]) -> None:
n = len(nums)
i = n-2
while i >= 0 and nums[i] >= nums[i+1]:
i -= 1
if i > -1: // i==-1,不存在下一个更大的排列
j = n-1
while j >= 0 and nums[j] <= nums[i]:
j -= 1
nums[i], nums[j] = nums[j], nums[i]
start, end = i+1, n-1
while start < end:
nums[start], nums[end] = nums[end], nums[start]
start += 1
end -= 1
return nums
'''
## Go

View File

@ -602,7 +602,48 @@ func trap(height []int) int {
}
```
动态规划解法:
```go
func trap(height []int) int {
sum:=0
n:=len(height)
lh:=make([]int,n)
rh:=make([]int,n)
lh[0]=height[0]
rh[n-1]=height[n-1]
for i:=1;i<n;i++{
lh[i]=max(lh[i-1],height[i])
}
for i:=n-2;i>=0;i--{
rh[i]=max(rh[i+1],height[i])
}
for i:=1;i<n-1;i++{
h:=min(rh[i],lh[i])-height[i]
if h>0{
sum+=h
}
}
return sum
}
func max(a,b int)int{
if a>b{
return a
}
return b
}
func min(a,b int)int{
if a<b{
return a
}
return b
}
```
JavaScript:
```javascript
//双指针
var trap = function(height) {

View File

@ -39,7 +39,7 @@
那么排列问题其实也是一样的套路。
**还要强调的是去重一定要对元素行排序,这样我们才方便通过相邻的节点来判断是否重复使用了**
**还要强调的是去重一定要对元素行排序,这样我们才方便通过相邻的节点来判断是否重复使用了**
我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

View File

@ -598,5 +598,60 @@ var maxDepth = function(root) {
};
```
## C
二叉树最大深度递归
```c
int maxDepth(struct TreeNode* root){
//若传入结点为NULL返回0
if(!root)
return 0;
//求出左子树深度
int left = maxDepth(root->left);
//求出右子树深度
int right = maxDepth(root->right);
//求出左子树深度和右子树深度的较大值
int max = left > right ? left : right;
//返回较大值+11为当前层数
return max + 1;
}
```
二叉树最大深度迭代
```c
int maxDepth(struct TreeNode* root){
//若传入根节点为NULL返回0
if(!root)
return 0;
int depth = 0;
//开辟队列空间
struct TreeNode** queue = (struct TreeNode**)malloc(sizeof(struct TreeNode*) * 6000);
int queueFront = 0;
int queueEnd = 0;
//将根结点入队
queue[queueEnd++] = root;
int queueSize;
//求出当前队列中元素个数
while(queueSize = queueEnd - queueFront) {
int i;
//若当前队列中结点有左右子树,则将它们的左右子树入队
for(i = 0; i < queueSize; i++) {
struct TreeNode* tempNode = queue[queueFront + i];
if(tempNode->left)
queue[queueEnd++] = tempNode->left;
if(tempNode->right)
queue[queueEnd++] = tempNode->right;
}
//更新队头下标
queueFront += queueSize;
//深度+1
depth++;
}
return depth;
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -197,6 +197,33 @@ class Solution:
```
Go
```go
// 买卖股票的最佳时机Ⅱ 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int) int {
dp := make([][]int, len(prices))
status := make([]int, len(prices) * 2)
for i := range dp {
dp[i] = status[:2]
status = status[2:]
}
dp[0][0] = -prices[0]
for i := 1; i < len(prices); i++ {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])
}
return dp[len(prices) - 1][1]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
```
```go
func maxProfit(prices []int) int {

View File

@ -347,7 +347,38 @@ const maxProfit = prices => {
};
```
Go:
> 版本一:
```go
// 买卖股票的最佳时机III 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int) int {
dp := make([][]int, len(prices))
status := make([]int, len(prices) * 4)
for i := range dp {
dp[i] = status[:4]
status = status[4:]
}
dp[0][0], dp[0][2] = -prices[0], -prices[0]
for i := 1; i < len(prices); i++ {
dp[i][0] = max(dp[i - 1][0], -prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i])
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i])
}
return dp[len(prices) - 1][3]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
```
-----------------------

View File

@ -273,6 +273,41 @@ class Solution:
return dp[2*k]
```
Go
版本一:
```go
// 买卖股票的最佳时机IV 动态规划
// 时间复杂度O(kn) 空间复杂度O(kn)
func maxProfit(k int, prices []int) int {
if k == 0 || len(prices) == 0 {
return 0
}
dp := make([][]int, len(prices))
status := make([]int, (2 * k + 1) * len(prices))
for i := range dp {
dp[i] = status[:2 * k + 1]
status = status[2 * k + 1:]
}
for j := 1; j < 2 * k; j += 2 {
dp[0][j] = -prices[0]
}
for i := 1; i < len(prices); i++ {
for j := 0; j < 2 * k; j += 2 {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i])
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i])
}
}
return dp[len(prices) - 1][2 * k]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
```
```go
func maxProfit(k int, prices []int) int {

View File

@ -447,7 +447,80 @@ var countNodes = function(root) {
};
```
## C:
递归法
```c
int countNodes(struct TreeNode* root) {
//若传入结点不存在返回0
if(!root)
return 0;
//算出左右子树的结点总数
int leftCount = countNodes(root->left);
int rightCount = countNodes(root->right);
//返回左右子树结点总数+1
return leftCount + rightCount + 1;
}
int countNodes(struct TreeNode* root){
return getNodes(root);
}
```
迭代法
```c
int countNodes(struct TreeNode* root){
//记录结点总数
int totalNum = 0;
//开辟栈空间
struct TreeNode** stack = (struct TreeNode**)malloc(sizeof(struct TreeNode*) * 100);
int stackTop = 0;
//如果root结点不为NULL则将其入栈。若为NULL则不会进入遍历返回0
if(root)
stack[stackTop++] = root;
//若栈中有结点存在,则进行遍历
while(stackTop) {
//取出栈顶元素
struct TreeNode* tempNode = stack[--stackTop];
//结点总数+1
totalNum++;
//若栈顶结点有左右孩子,将它们入栈
if(tempNode->left)
stack[stackTop++] = tempNode->left;
if(tempNode->right)
stack[stackTop++] = tempNode->right;
}
return totalNum;
}
```
满二叉树
```c
int countNodes(struct TreeNode* root){
if(!root)
return 0;
int leftHeight = 0;
int rightHeight = 0;
struct TreeNode* rightNode = root->right;
struct TreeNode* leftNode = root->left;
//求出左子树深度
while(leftNode) {
leftNode = leftNode->left;
leftHeight++;
}
//求出右子树深度
while(rightNode) {
rightNode = rightNode->right;
rightHeight++;
}
//若左右子树深度相同为满二叉树。结点个数为2^height-1
if(rightHeight == leftHeight) {
return (2 << leftHeight) - 1;
}
//否则返回左右子树的结点个数+1
return countNodes(root->right) + countNodes(root->left) + 1;
}
```
-----------------------
<div align="center"><img src=https://code-thinking.cdn.bcebos.com/pics/01二维码一.jpg width=500> </img></div>

View File

@ -563,7 +563,7 @@ var invertTree = function(root) {
};
```
C:
### C:
递归法
```c
struct TreeNode* invertTree(struct TreeNode* root){
@ -580,6 +580,7 @@ struct TreeNode* invertTree(struct TreeNode* root){
return root;
}
```
迭代法:深度优先遍历
```c
struct TreeNode* invertTree(struct TreeNode* root){

View File

@ -408,7 +408,7 @@ var maxSlidingWindow = function (nums, k) {
// 入队当前元素下标
q.push(i);
// 判断当前最大值(即队首元素)是否在窗口中,若不在便将其出队
while (q[0] <= i - k) {
if (q[0] <= i - k) {
q.shift();
}
// 当达到窗口大小时便开始向结果中添加数据

View File

@ -205,6 +205,40 @@ class Solution:
```
Go
```go
// 最佳买卖股票时机含冷冻期 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int) int {
n := len(prices)
if n < 2 {
return 0
}
dp := make([][]int, n)
status := make([]int, n * 4)
for i := range dp {
dp[i] = status[:4]
status = status[4:]
}
dp[0][0] = -prices[0]
for i := 1; i < n; i++ {
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]))
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3])
dp[i][2] = dp[i - 1][0] + prices[i]
dp[i][3] = dp[i - 1][2]
}
return max(dp[n - 1][1], max(dp[n - 1][2], dp[n - 1][3]))
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
```
Javascript:

View File

@ -121,6 +121,41 @@ class Solution {
```
Python
### 解法1:
扫描每个cell,如果当前位置为岛屿 grid[i][j] == 1 从当前位置判断四边方向如果边界或者是水域证明有边界存在res矩阵的对应cell加一。
```python3
class Solution:
def islandPerimeter(self, grid: List[List[int]]) -> int:
m = len(grid)
n = len(grid[0])
# 创建res二维素组记录答案
res = [[0] * n for j in range(m)]
for i in range(m):
for j in range(len(grid[i])):
# 如果当前位置为水域不做修改或reset res[i][j] = 0
if grid[i][j] == 0:
res[i][j] = 0
# 如果当前位置为陆地往四个方向判断update res[i][j]
elif grid[i][j] == 1:
if i == 0 or (i > 0 and grid[i-1][j] == 0):
res[i][j] += 1
if j == 0 or (j >0 and grid[i][j-1] == 0):
res[i][j] += 1
if i == m-1 or (i < m-1 and grid[i+1][j] == 0):
res[i][j] += 1
if j == n-1 or (j < n-1 and grid[i][j+1] == 0):
res[i][j] += 1
# 最后求和res矩阵这里其实不一定需要矩阵记录可以设置一个variable res 记录边长,舍矩阵无非是更加形象而已
ans = sum([sum(row) for row in res])
return ans
```
Go

View File

@ -354,6 +354,35 @@ var constructMaximumBinaryTree = function (nums) {
};
```
## C
```c
struct TreeNode* traversal(int* nums, int left, int right) {
//若左边界大于右边界返回NULL
if(left >= right)
return NULL;
//找出数组中最大数坐标
int maxIndex = left;
int i;
for(i = left + 1; i < right; i++) {
if(nums[i] > nums[maxIndex])
maxIndex = i;
}
//开辟结点
struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));
//将结点的值设为最大数组数组元素
node->val = nums[maxIndex];
//递归定义左孩子结点和右孩子结点
node->left = traversal(nums, left, maxIndex);
node->right = traversal(nums, maxIndex + 1, right);
return node;
}
struct TreeNode* constructMaximumBinaryTree(int* nums, int numsSize){
return traversal(nums, 0, numsSize);
}
```
-----------------------

View File

@ -139,7 +139,7 @@ if (root->val < low) {
root->left = trimBST(root->left, low, high);
```
此时节点3的孩子就变成了节点2将节点0从二叉树中移除了。
此时节点3的孩子就变成了节点2将节点0从二叉树中移除了。
最后整体代码如下:

View File

@ -150,14 +150,16 @@ class Solution:
```
Go
```Go
```go
// 买卖股票的最佳时机含手续费 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int, fee int) int {
n := len(prices)
dp := make([][2]int, n)
dp[0][0] = -prices[0]
for i := 1; i < n; i++ {
dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]-fee)
dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
}
return dp[n-1][1]
}

View File

@ -267,6 +267,57 @@ var removeDuplicates = function(s) {
};
```
C:
方法一:使用栈
```c
char * removeDuplicates(char * s){
//求出字符串长度
int strLength = strlen(s);
//开辟栈空间。栈空间长度应为字符串长度+1为了存放字符串结束标志'\0'
char* stack = (char*)malloc(sizeof(char) * strLength + 1);
int stackTop = 0;
int index = 0;
//遍历整个字符串
while(index < strLength) {
//取出当前index对应字母之后index+1
char letter = s[index++];
//若栈中有元素,且栈顶字母等于当前字母(两字母相邻)。将栈顶元素弹出
if(stackTop > 0 && letter == stack[stackTop - 1])
stackTop--;
//否则将字母入栈
else
stack[stackTop++] = letter;
}
//存放字符串结束标志'\0'
stack[stackTop] = '\0';
//返回栈本身作为字符串
return stack;
}
```
方法二:双指针法
```c
char * removeDuplicates(char * s){
//创建快慢指针
int fast = 0;
int slow = 0;
//求出字符串长度
int strLength = strlen(s);
//遍历字符串
while(fast < strLength) {
//将当前slow指向字符改为fast指向字符。fast指针+1
char letter = s[slow] = s[fast++];
//若慢指针大于0且慢指针指向元素等于字符串中前一位元素删除慢指针指向当前元素
if(slow > 0 && letter == s[slow - 1])
slow--;
else
slow++;
}
//在字符串结束加入字符串结束标志'\0'
s[slow] = 0;
return s;
}
```
-----------------------

View File

@ -150,7 +150,35 @@ class Solution:
res[i] = hash[num]
return res
```
Go
```go
func smallerNumbersThanCurrent(nums []int) []int {
// mapkey[数组中出现的数] value[比这个数小的个数]
m := make(map[int]int)
// 拷贝一份原始数组
rawNums := make([]int,len(nums))
copy(rawNums,nums)
// 将数组排序
sort.Ints(nums)
// 循环遍历排序后的数组值为map的key索引为value
for i,v := range nums {
_,contains := m[v]
if !contains {
m[v] = i
}
}
// 返回值结果
result := make([]int,len(nums))
// 根据原始数组的位置,存放对应的比它小的数
for i,v := range rawNums {
result[i] = m[v]
}
return result
}
```
JavaScript
```javascript